Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
-
S. Tashakor
, E. Zarifi and A. A. Salehi
Abstract
The High-Performance Light Water Reactor (HPLWR) is the European version of the advance nuclear energy power plant at Supercritical-pressure. A light water reactor at supercritical pressure, being currently under design, is the new generation of nuclear reactors. The aim of this study is to predict the HPLWR neutronic behavior of the axial enrichment profile with an average enrichment of 5 w/o U-235. Neutronic calculations are performed using WIMS and CITATION codes. Changes in neutronic parameter, such as Power Peaking Factor (PPF) are discussed in this paper.
Kurzfassung
Der Hochleistungs-Leichtwasserreaktor (HPLWR) ist die Europäische Version des fortgeschrittenen Kernreaktors mit überkritischem Druck. Der Leichtwasserreaktor mit überkritischem Druck gehört zur neuen Generation von Kernreaktoren. Ziel dieser Studie ist es, das neutronische Verhalten des axialen Anreicherungsprofils des HPLWR mit einer durchschnittlichen Anreicherung von 5 w/o U-235 voraus zu sagen. Neutronische Berechnungen wurden durchgeführt mit Hilfe von WIMS und CITATION Codes. Änderungen in den neutronischen Parametern, wie zum Beispiel beim Leistungsformfakor, werden in diesem Beitrag diskutiert.
References
1 Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maráczy, C.; Kyrki-Rajamäki, R.; Souyri, A.; Dumaz, P.: High performance light water reactor. Nucl. Eng. Des.221 (2003) 167–18010.1016/S0029-5493(02)00331-XSearch in Google Scholar
2 USDOE: Nuclear Energy Research Advisory Committee and the Generation IV International Forum, a Technology Roadmap for the Generation IV Nuclear Energy System, 2002Search in Google Scholar
3 Ammirabile, L.: Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN. Nucl. Eng. Des.240 (2010) 3087–309410.1016/j.nucengdes.2010.05.025Search in Google Scholar
4 Waata, C.: Coupled Neutronics, Thermal-hydraulics Analysis of a High performance Light-water Reactor Fuel Assembly. FZKA, 2006Search in Google Scholar
5 Maráczy, C.; Hegyi, G.; Hordósy, G.; Temesvári, E.; Hegedüs,C.; Molnár,A.: High Performance Light Water Reactor studies. In: Proceedings of 16PBNC, Aomori, Japan, October 13–18, P16-P1221, 2008Search in Google Scholar
6 Yamaji, A.; Kamei, K.; Oka, Y.; Koshizuka, S.: Improved core design of the high temperature supercritical-pressure light water reactor. Ann. Nucl. Energy32 (2005) 651–67010.1016/j.anucene.2004.12.006Search in Google Scholar
7 Tashakor, S.; Salehi, A. A.; Jahanfarnia, G.; Abbaspour Tehrani Fard, A.: Neutronic analysis of HPLWR fuel assembly cluster. Annals of Nuclear Energy50 (2012) 38–4310.1016/j.anucene.2012.07.015Search in Google Scholar
8 Cheng, X.: Design analysis of core assemblies for supercritical pressure conditions Nucl. Eng. Des.223 (2003) 279–294Search in Google Scholar
9 Hofmeister, J.; Schulenberg, T.; Starflinger, J.: Optimization of a fuel Assembly for HPLWR. ICAPP 2005, Seoul, Korea, Paper 5077, 2005Search in Google Scholar
10 NEA: NEA-1507, WIMSD-5B (98/11), Deterministic Multi-group Reactor Lattice Calculation, 1999Search in Google Scholar
11 Fowler, T.B.: CITATION-LDI2 Nuclear Reactor Core Analysis Code System. CCC-643, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1999Search in Google Scholar
12 Tashakor, S.; Salehi, A. A.; Jahanfarnia, G.; Abbaspour Tehrani Fard, A.: Variable moderation high performance light water reactor (VMHWR). Annals of Nuclear Energy50 (2013) 1–5Search in Google Scholar
13 Tashakor, S.; Salehi, A. A.; Jahanfarnia, G.; Abbaspour Tehrani Fard, A.: Thermal-hydraulic analysis of HPLWR fuel assembly cluster. The Journal of Supercritical Fluids77 (2013) 91–9910.1016/j.supflu.2013.02.025Search in Google Scholar
© 2015, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Considering the uncertainties in empirical correlations for vertical countercurrent flow limitation (CCFL) with TRACE
- 3RIP trip startup test simulation of TRACE/PARCS model for Lungmen ABWR under different power and flow conditions
- Development of a new analytic function expansion nodal code, HexDANM, for solving the neutron diffusion equation in hexagonal-Z geometry
- Laser cleaning of steam generator tubing based on acoustic emission technology
- Axial enrichment profile in advance nuclear energy power plant at supercritical-pressures
- Analysis of the small break loss of coolant accident in the VVER-1000/V446 reactor
- Thermal hydraulic analysis of reactivity accidents in MTR research reactors using RELAP5
- Depletion of Gadolinium burnable poison in a PWR assembly with high burnup fuel
- Nuclear model calculations on cyclotron production of 51Cr
- Radiotracer application for characterization of nuclear grade anion exchange resins Tulsion A-23 and Dowex SBR LC
- Solving the criticality problem with the reflected boundary condition for the triplet anisotropic scattering with the modified FN method