Home Technology Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
Article
Licensed
Unlicensed Requires Authentication

Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000

  • Yu. Saunin , A. Dobrotvorski , A. Semenikhin , S. Ryasny , G. Kulish and A. Abdullaev
Published/Copyright: August 24, 2015
Become an author with De Gruyter Brill

Abstract

Nowadays the demands for accuracy of determining the weighted mean reactor power significantly increases due to implementing programs aimed at increasing installed power at nuclear power plants with WWER-1000 reactors. This accuracy strongly depends on the coolant temperature stratification in the primary circuit pipes, especially in the hot legs. Thus, the acute problem is to investigate the phenomenon on the basis of the full-scale tests experimental data and the calculated data of computational fluid dynamics simulations. The paper presents the full-scale experimental data on the coolant temperature distribution in the hot legs obtained via I&C systems, primarily via in-core monitoring system. These data were obtained at the pilot operation stage of Unit 4 Kalinin nuclear power plant in a stationary mode at nominal power level. To present the results of calculating simulation for the same mode CFD codes are used.

Kurzfassung

Infolge von Leistungserhöhungen in WWER-1000-Reaktoren steigen die Anforderungen an die Genauigkeiten bei der Berechnung der gewichteten mittleren Reaktorleistung signifikant. Diese Genauigkeit hängt stark von der Temperaturschichtung des Kühlmittels im Primärkreislauf, insbesondere im heißen Strang, ab. So stellt sich für die analytischen Untersuchungen die Aufgabenstellung die Phänomene auf der Basis von Full-Scale-Experimentdaten und CFD-Berechnungen zu untersuchen. In diesem Beitrag werden experimentelle Full-Scale-Daten der Temperaturverteilung des Kühlmittels im heißen Strand vorgestellt, die mit Hilfe von In-Kern-Monitoring-Systemen während des Pilotbetriebs des Kalinin 4 NPP bei stationären Betriebsbedingungen bei Nennleistung aufgenommen wurden. Diese Daten werden mit Ergebnissen aus CFD-Analysen gegenübergestellt.


* E-mail:

References

1 Sokolov, D. A.; Kim, V. V.; Kuznetcov, V. I.: Increase of power WWER-1000. Works of the Odessa polytechnical university, v. 2 (28), 2007, (in Russian)Search in Google Scholar

2 Asmolov, V. G.: Maintenance of safety and increase of efficiency of atomic engineering of Russian. Proc. 9th Int. Conf. Safety, efficiency and atomic engineering economy, JSC “Concern Rosenergoatom”, Moscow, May 21–23, 2014, (in Russian)Search in Google Scholar

3 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Examination of factors determining the coolant thermal stratification in hot legs of primary circuit loops of NPPs with WWER-1000 reactors. Proc. 8th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER, JSC EDO “Gidropress”, Podolsk, 2013 (in Russian)Search in Google Scholar

4 Bai, V. F.; Bogachek, L. N; Makarov, S. V.; Lupishko, A. N.: The state of the in-core temperature monitoring and the analysis of basic thermophysical power plant characteristics at Kalinin NPP power units. Proc. 7th Int. Conf. Safety, efficiency and atomic engineering economy, JSC “Concern Rosenergoatom”, Moscow, 2010 (in Russian)Search in Google Scholar

5 Hashemian, H. M.: Maintenance of process instrumentation in nuclear power plants. Springer-VerlagBerlin Heidelberg, 2006Search in Google Scholar

6 Chiang, J. S. C.; Pei, B. S.; Tsai, F. P.: Pressurized water reactor (PWR) hot-leg streaming. Part 1: computational fluid dynamics (CFD) simulations. Nuclear Engineering and Design241 (2011) 1768177510.1016/j.nucengdes.2009.12.028Search in Google Scholar

7 Smith, B. L.: Assessment of CFD codes used in nuclear reactor safety simulations. Nuclear Engineering and Technology42 (2010) 10.5516/net.2010.42.4.339Search in Google Scholar

8 Kulish, G. V.; Abdullaev, A. M. etal.: 3D distribution of the coolant temperature in PCP of the power unit No2 South Ukrainian NPP. Proc. 8th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER. JSC EDO “Gidropress”, Podolsk, 2013 (in Russian)Search in Google Scholar

9 Kulish, G. V.: Calculation of the coolant flow distribution in a core of the power unit No3 South Ukrainian NPP in 21st-24th fuel lifetimes. CN-LFD-08-07, Edition 0, CDA, 2007 (in Russian)Search in Google Scholar

10 Saunin, Yu. V.; Dobrotvorsky, A. N.; Semenikhin, A. V.: Research of the coolant temperature at a core inlet at commissioning the power unit No. 2 Rostov NPP. Proc. 7th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER. JSC EDO “Gidropress”, Podolsk, 2011 (in Russian)Search in Google Scholar

11 SolidWorks® Office Premium 2009×64 Edition. Reference GuideSearch in Google Scholar

12 Bottcher, M.: Detailed CFX-5 study of the coolant mixing within the reactor pressure vessel of a VVER-1000 reactor during a non-symmetrical heat-up test. Nuclear Engineering and Design238 (2008) 44545210.1016/j.nucengdes.2007.02.054Search in Google Scholar

13 Prasser, H.-M.; Kliem, S.: Coolant mixing experiments in the upper plenum of the ROCOM test facility. Nuclear Engineering and Design276 (2014) 304210.1016/j.nucengdes.2014.05.016Search in Google Scholar

14 Bieder, U. etal.: Simulation of mixing effects in a VVER-1000 reactor. Nuclear Engineering and Design237 (2007) 171810.1016/j.nucengdes.2007.02.015Search in Google Scholar

15 Lisenkov, E. etal.: Investigation of coolant mixing in reactor WWER-1000. Proc. 6th Int. Conf. Safety, Assur. Nucl. Power Plants with WWER. JSC EDO “Gidropress”, Podolsk, 2009 (in Russian)Search in Google Scholar

Received: 2015-02-03
Published Online: 2015-08-24
Published in Print: 2015-08-27

© 2015, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Summaries/Kurzfassungen
  4. Summaries
  5. Editorial
  6. Research on the reactor physics and reactor safety of VVER reactors – AER Symposium 2014
  7. Technical Contributions/Fachbeiträge
  8. Assessment of the uncertainties of MULTICELL calculations by the OECD NEA UAM PWR pin cell burnup benchmark
  9. Development of codes and KASKAD complex
  10. Applying full multigroup cell characteristics from MCU code to finite difference calculations of neutron field in VVER core
  11. Calculations of 3D full-scale VVER fuel assembly and core models using MCU and BIPR-7A codes
  12. An analysis of reactivity prediction during the reactor start-up process
  13. Experimental and computational investigations of heat and mass transfer of intensifier grids
  14. Implementation of CFD module in the KORSAR thermal-hydraulic system code
  15. Numerical and experimental investigation of 3D coolant temperature distribution in the hot legs of primary circuit of reactor plant with WWER-1000
  16. Analyses of Beyond Design Basis Accident Homogeneous Boron Dilution Scenarios
  17. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model
  18. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle
  19. Usage of burnt fuel isotopic compositions from engineering codes in Monte-Carlo code calculations
  20. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark
  21. Inter-assembly gap deviations in VVER-1000: Accounting for effects on engineering margin factors
Downloaded on 10.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110511/pdf
Scroll to top button