Home Technology A study on empirical systematic for the (d,n) reaction cross sections at 8.6 MeV
Article
Licensed
Unlicensed Requires Authentication

A study on empirical systematic for the (d,n) reaction cross sections at 8.6 MeV

  • M. Yiğit and E. Tel
Published/Copyright: December 18, 2014
Become an author with De Gruyter Brill

Abstract

Recently, many formalizations have been developed to explain some reaction mechanisms such as neutron or proton induced reactions. In this study, (d, n) reaction mechanism was investigated developing the cross-section systematic formula. The (d, n) cross sections at 8.6 MeV deuteron energy have been calculated using these formula for some target nuclei (A = 10∼123). The cross sections calculated are important for the development of fusion reactor technology. Obtained calculation results from the formula have been also compared and discussed with results calculated by the codes ALICE/ASH (equilibrium and pre-equilibrium theories) and TENDL-2012 (Talys-based), and with results of available experimental values. It is shown, that the suggested empirical equation at the 8.6 MeV deuteron energy works very well for a quick estimation of (d, n) nuclear cross sections.

Kurzfassung

In letzter Zeit wurden eine Reihe von Formalisierungen entwickelt um einige Reaktionsmechanismen, wie zurm Beispiel Neutronen- oder Protonenmechanismen zu erklären. In dieser Studie wurden (d, n) Reaktionsmechanismen untersucht durch Anwendung weiterentwickelter Wirkungsquerschnittsformeln. Die Wirkungsquerschnitte von (d, n) Kernreaktionen bei 8.6 MeV Deuteronenenergie wurden mit Hilfe dieser Formeln für einige Targetkerne (A = 10∼123) berechnet. Diese Wirkungsquerschnitte sind wichtig für die Weiterentwicklung der Fusionsreaktortechnologie. Die erhaltenen Rechenergebnisse wurden verglichen und diskutiert mit Ergebnissen, die mittels der Codes ALICE/ASH und TENDL-2012 erhalten wurden so wie mit verfügbaren experimentellen Werten. Es zeigte sich, dass die vorgeschlagene empirische Gleichung für eine schnelle Abschätzung der Wirkungsquerschnitte von (d, n) Kernreaktionen bei 8.6 MeV Deuteronenenergie geeignet ist.


* E-mail:

References

1 Yiğit, M.; Tel, E.: Nuclear model calculation for production of 18F, 22Na, 44,46Sc, 54Mn, 64Cu, 68Ga, 76Br and 90Y radionuclides used in medical applications. Annals of Nuclear Energy69 (2014) 445010.1016/j.anucene.2014.01.036Search in Google Scholar

2 Tel, E. et al.: Cross sections calculations of (d,t) nuclear reactions up to 50 MeV. J. Fusion Energy32 (2013) 27327710.1007/s10894-012-9550-4Search in Google Scholar

3 Yiğit, M. et al.: Deuteron induced (d,p) and (d,2p) nuclear reactions up to 50 MeV. J. Fusion Energy32 (2013) 36237010.1007/s10894-012-9579-4Search in Google Scholar

4 Yiğit, M. et al.: Calculations of proton emission cross sections in deuteron induced reactions of some fusion structural materials. J. Fusion Energy32 (2013) 31732110.1007/s10894-012-9569-6Search in Google Scholar

5 Yiğit, M.; Tel, E.: Theoretical study of deuteron induced reactions on 6,7Li, 9Be and 19F targets. Kerntechnik79 (2014) 6369. 10.3139/124.110394Search in Google Scholar

6 Amar, A.; El Sayed, A. R.: An Analysis of 7Li(d,t)6Li Reaction, Adv. Studies Theor. Phys.8 (2014) 111910.12988/astp.2014.39105Search in Google Scholar

7 Goyal, S. L.; Pratibha, G.: Empirical relation and establishment of shell effects in (n,2n) reaction cross-sections at 14 MeV. Pramana72 (2009) 35510.1007/s12043-009-0031-xSearch in Google Scholar

8 Griffin, J. J.: Statistical Model of Intermediate Structure. Phys. Rev. Lett.17 (1966) 47810.1103/PhysRevLett.17.478Search in Google Scholar

9 Tel, E. et al.: Investigation of coulomb and pairing effects using new developed empirical formulas for proton-induced reaction cross sections. Phys. of Atomic Nuclei73 (2010) 41241910.1134/S1063778810030038Search in Google Scholar

10 Konobeyev, A. Yu.; Korovin, Yu. A.: Semi-empirical systematics of (n,p) reaction cross-sections at the energy of 14.5 MeV. Nucl. Instr. and Meth. B103 (1995) 152210.1016/0168-583X(95)00515-3Search in Google Scholar

11 Broeders, C. H. M.; Konobeyev, A. Yu.: Semi-empirical systematics of (n,p) reaction cross-section at 14.5, 20, and 30 MeV. Nucl. Phys. A780 (2006) 13014510.1016/j.nuclphysa.2006.09.015Search in Google Scholar

12 Broeders, C. H. M.; Konobeyev, A. Yu.: Semi-empirical systematics of (n,3He) reaction cross-section at 14.6 and 20 MeV. Appl. Radiat. and Isot.65 (2007) 45445710.1016/j.apradiso.2006.09.004Search in Google Scholar

13 Ait-Tahar, S.: The systematics of (n,p) cross sections for 14 MeV neutrons. J. Phys. G: Nucl. Phys.13 (1987) 12112510.1088/0305-4616/13/7/002Search in Google Scholar

14 Levkovskii, V. N.: Empirical Behavior of the (n,p) Cross Section for 14–15 MeV Neutrons. Soviet Phys. JETP18 (1964) 213217Search in Google Scholar

15 Yiğit, M.; Tel, E.: Cross section systematics of (d,p) reactions at 8.5 MeV. Nuclear Engineering and Design (2014) in press 10.1016/j.nucengdes.2014.09.018Search in Google Scholar

16 Tel, E. et al.: A new empirical formula for 14–15 MeV neutron-induced (n, p) reaction cross sections. J. Phys. G: Nucl. Part. Phys.29 (2003) 2169217710.1088/0954-3899/29/9/311Search in Google Scholar

17 Tel, E. et al.: Investigation of the pairing effect using newly evaluated empirical studies for 14–15 MeV neutron reaction cross sections. Phys. Rev. C75 (2007) 03461410.1103/PhysRevC.75.034614Search in Google Scholar

18 Belgaid, M.; Asghar, M.: Semi-empirical systematics of (n,α) cross sections for 14.5 MeV neutrons. Nucl. Instrum. Methods Phys. Res. B149 (1999) 38338910.1016/S0168-583X(98)00975-6Search in Google Scholar

19 Kadem, F. et al.: Systematics studies of (n,α) reaction cross sections at 14.5 MeV neutrons energy. Nucl. Instrum. Methods Phys. Res. B266 (2008) 3213322010.1016/j.nimb.2008.03.216Search in Google Scholar

20 Belgaid, M. et al.: Semi-empirical systematics of (n,t) cross-sections for 14.5 MeV neutrons. Nucl. Instr. and Meth. B201 (2003) 54510.1016/S0168-583X(02)02071-2Search in Google Scholar

21 Tel, E., et al.: Application of asymmetry depending empirical formulas for (p,nα) reaction cross-sections at 24.8 and 28.5 MeV incident energies. Appl Radiat. and Isot.67 (2009) 27227610.1016/j.apradiso.2008.11.001Search in Google Scholar PubMed

22 Tel, E. et al.: Newly developed semi-empirical formulas for (p,α) at 17.9 MeV and (p,np) at 22.3 MeV reaction cross-sections. Pramana74 (2010) 93194310.1007/s12043-010-0085-9Search in Google Scholar

23 Broeders, C.H.M. et al.: ALICE/ASH-code manual, FZK 7183, May 2006Search in Google Scholar

24 Koning, A. J. et al.: TENDL-2012: TALYS-based Evaluated Nuclear Data Library, http://www.talys.eu/tendl-2012/Search in Google Scholar

25 Experimental Nuclear Reaction Data (EXFOR)http://www.nndc.bnl.gov/exfor/exfor.htmSearch in Google Scholar

26 Weisskopf, V.: Statistics and Nuclear Reactions. Phys. Rev.52 (1937) 29510.1103/PhysRev.52.295Search in Google Scholar

27 Blann, M.; Vonach, H. K.: Global test of modified pre-compound decay models. Phys. Rev. C.28 (1983) 147510.1103/PhysRevC.28.1475Search in Google Scholar

28 Blann, M.: Hybrid Model for pre-equilibrium decay in nuclear reactions. Phys. Rev. Lett.27 (1971) 33710.1103/PhysRevLett.27.1550Search in Google Scholar

29 Weisskopf, V. F.; Ewing, D. H.: On the yield of nuclear reactions with heavy elements. Phys. Rev.57 (1940) 47210.1103/PhysRev.57.472Search in Google Scholar

30 Pai, H. L. et al.: Statistical-model calculations of (n,p) cross sections using shell-independent parameters. Nucl. Phys. A164 (1971) 52654410.1016/0375-9474(71)90777-9Search in Google Scholar

31 Pai, H. L.; Andrews, D.G.: Empirical formulas for 14 MeV (n,p) cross sections. Can. J. Phys.56 (1978) 94410.1139/p78-126Search in Google Scholar

32 WestJr, H. I. et al.: Excitation Functions for the Nuclear Reactions on Titanium Leading to the Production of 48V, 44Sc, and 47Sc by Proton, Deuteron and Triton Irradiations at 0–35 MeV. Report: U.C., Lawrence Rad. Lab. (Berkeley and Livermore) No.115738, (3) (1993) p. 1Search in Google Scholar

33 Chen, K. L.; Miller, J. M.: Comparison between reactions of alpha particles with Scandium-45 and deuterons with Titanium-47. Phys. Rev.134 (1964) 126910.1103/PhysRev.134.B1269Search in Google Scholar

34 Coetzee, P. P.; Peisach, M.: Activation cross sections for deuteron-induced reactions on some elements of the first transition series up to 5.5 MeV. Radiochimica Acta17 (1972) 110.1524/ract.1972.17.1.1Search in Google Scholar

35 Cogneau, M. et al.: Absolute cross sections and excitation functions for deuteron-induced reactions on the nickel isotopes between 2 and 12 MeV. Nuclear Physics A99 (1967) 68669410.1016/0375-9474(67)90379-XSearch in Google Scholar

36 Anders, B. et al.: Excitation functions of nuclear reactions producing 11C. Zeitschrift für Physik A Atoms and Nuclei, 301 (1981) 35336110.1007/BF01421701Search in Google Scholar

37 Williams, D. C.; Irvine, J. W.: Nuclear Excitation Functions and Thick-Target Yields: Zn+d and Ar40(d,α). Phys. Rev.130 (1963) 26527110.1103/PhysRev.130.265Search in Google Scholar

38 Otozai, K. et al.: Excitation functions for deuteron-induced reactions. Nucl. Phys. A107 (1968) 42743510.1016/0375-9474(68)90630-1Search in Google Scholar

39 Scholten, B. et al.: Excitation functions of deuteron induced nuclear reactions on enriched 78Kr with particular relevance to the production of 76Br. Radiochimica Acta92 (2004) 20320710.1524/ract.92.4.203.35599Search in Google Scholar

40 Dóczi, R. et al.: Possibility of production of 81Rb via 80Kr(d,n) reaction at a small cyclotron. Radiochimica Acta88 (2000) 13510.1524/ract.2000.88.3-4.135Search in Google Scholar

41 Aleksandrov, Ju. A., et al.: Excitation functions for the ground states of Tc-95 and Tc-94 for (d,n) and (d,2n) reactions. Izv. Rossiiskoi Akademii Nauk, Ser. Fiz.39 (1975) 2127Search in Google Scholar

42 Randa, Z.; Svoboda, K.: Excitation Functions and Yields of (d,n) and (d,2n) Reactions on Natural Molybdenum. Jour. of Inorganic and Nucl. Chemist.38 (1976) 2289229510.1016/0022-1902(76)80213-8Search in Google Scholar

43 Hermanne, A. et al.: Experimental cross sections for charged particle production of the therapeutic radionuclide 111Ag and its PET imaging analogue 104 m,gAg. Nucl. Instr. and Meth. B217 (2004) 19320110.1016/j.nimb.2003.09.038Search in Google Scholar

44 Takács, S. et al.: Excitation function of 122Te(d,n)123I nuclear reaction: production of 123I at a low energy cyclotron. Appl. Radiat. and Isot.50 (1999) 53554010.1016/S0969-8043(98)00059-1Search in Google Scholar

45 Scholten, B. et al.: Excitation functions of deuteron induced reactions on 123Te: Relevance to the production of 123I and 124I at low and medium sized cyclotrons. Appl. Radiat. and Isot.48 (1997) 26727110.1016/S0969-8043(96)00149-2Search in Google Scholar

Received: 2014-07-28
Published Online: 2014-12-18
Published in Print: 2014-12-18

© 2014, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110441/pdf
Scroll to top button