Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems
-
A. Tres
, C. B. Picoloto , J. F. Prolo Filho , R. D. da Cunha und L. B. Barichello
Abstract
In this work a study of two-dimensional fixed-source neutron transport problems, in Cartesian geometry, is reported. The approach reduces the complexity of the multidimensional problem using a combination of nodal schemes and the Analytical Discrete Ordinates Method (ADO). The unknown leakage terms on the boundaries that appear from the use of the derivation of the nodal scheme are incorporated to the problem source term, such as to couple the one-dimensional integrated solutions, made explicit in terms of the x and y spatial variables. The formulation leads to a considerable reduction of the order of the associated eigenvalue problems when combined with the usual symmetric quadratures, thereby providing solutions that have a higher degree of computational efficiency. Reflective-type boundary conditions are introduced to represent the domain on a simpler form than that previously considered in connection with the ADO method. Numerical results obtained with the technique are provided and compared to those present in the literature.
Kurzfassung
In dieser Arbeit wird über Untersuchungen bei Transportproblemen mit zweidimensionalen Fixed-Source-Quelldaten in kartesischer Geometrie berichtet. Der Ansatz reduziert die Komplexität des vielschichtigen Problems durch Anwendung einer Kombination von nodalen Schemata und Analytischer Diskrete Ordinaten Methode (ADO). Die unbekannten Leckage-Terme am Rand, die durch die Verwendung der Ableitung des nodalen Systems zustande kommen, werden in den Quellterm einbezogen, um so eindimensionale integrierte Lösungen zu koppeln, ausgedrückt in Form von x und y räumlichen Variablen. Die Formulierung führt zu einer erheblichen Reduzierung der Ordnung der damit verbundenen Eigenwertprobleme, wenn sie mit den üblichen symmetrischen Quadraturen kombiniert werden, und liefern damit Lösungen mit höherer Recheneffizienz. Reflexionsrandbedingungen werden eingeführt, um den Bereich in einfacherer Form darzustellen als die vorher im Zusammenhang mit der ADO-Methode verwendeten Verfahren. Die mit dieser Technik erhaltenen numerischen Ergebnisse werden vorgestellt und mit denen in der Literatur verglichen.
References
1 Kóphóázi, J.; Lathouwers, D.; Kloosterman, J. L.: Development of a three-dimensional time-dependent calculation scheme for molten salt reactors and validation of the measurement data of the molten salt reactor experiment. Nuclear Science and Engineering163 (2009) 11810.13182/NSE163-118Suche in Google Scholar
2 Feghhi, S. A. H.; Gholamzadeh, Z.; Alipoor, Z.; Joharifard, M.; Tenreiro, C.: Calculation of the neutronic behavior of minor actinides burning in a thermal research reactor using the MCNPX 2.6 code. Kerntechnik78 (2013) 49610.3139/124.110366Suche in Google Scholar
3 Godoy, W. F.; DesJardin, P. E.: On the use of flux limiters in the discrete ordinates method for 3D radiation calculations in absorbing and scattering media. Journal of Computational Physics229 (2010) 318910.1016/j.jcp.2009.12.037Suche in Google Scholar
4 Wagner, J. C.; Mosher, S. W.; Evans, T. M.; Peplow, D. E.; Turner, J. A.: Hybrid and parallel domain-decomposition methods development to enable Monte Carlo for reactor analyses. Progress in Nuclear Science and Technology2 (2011) 81510.15669/pnst.2.815Suche in Google Scholar
5 Duerigen, S.; Fridman, E.: The simplified P3 approach on a trigonal geometry of the nodal reactor code DYN3D. Kerntechnik77 (2012) 22610.3139/124.110247Suche in Google Scholar
6 Capilla, M.; Talavera, C. F.; Ginestar, D.; Verd, G.: Application of a nodal collocation approximation for the multidimensional PL equations to the 3D Takeda benchmark problems. Annals of Nuclear Energy40 (2012) 110.1016/j.anucene.2011.09.014Suche in Google Scholar
7 Badruzzaman, A.: An efficient algorithm for nodal-transport solutions in multidimensional geometry. Nuclear Science and Engineering89 (1985) 28110.13182/NSE85-A17550Suche in Google Scholar
8 Lawrence, R. D.: Progress in nodal methods for the solution of the neutron diffusion and transport equations. Progress in Nuclear Energy17 (1986) 27110.1016/0149-1970(86)90034-XSuche in Google Scholar
9 Azmy, Y. Y.: Comparison of three approximations to the linear-linear nodal transport method in weighted diamond-difference form. Nuclear Science and Engineering100 (1988) 19010.13182/NSE88-5Suche in Google Scholar
10 Barros, R. C.; Larsen, E. W.: A spectral nodal method for one-group X,Y-geometry discrete ordinates problems. Nuclear Science and Engineering111 (1992) 3410.13182/NSE92-A23921Suche in Google Scholar
11 Hauser, E. B.; Pazos, R. P.; de Vilhena, M. T.: An error bound estimate and convergence of the Nodal-LTSN solution in a rectangle. Annals of Nuclear Energy32 (2005) 114610.1016/j.anucene.2005.02.007Suche in Google Scholar
12 Azmy, Y. Y.: Arbitrarily high order characteristic methods for solving the neutron transport equation. Annals of Nuclear Energy19 (1992) 59310.1016/0306-4549(92)90004-USuche in Google Scholar
13 Menezes, A. W.; Filho, H. Alves; Barros, R. C.; Moraes, C. S.; Dominguez, D. S.: Analytical spatial reconstruction scheme for the coarse-mesh solutions generated by the constant spectral nodal method for monoenergetic discrete ordinates transport calculations in X,Y geometry fission-chain reacting systems. Annals of Nuclear Energy53 (2013) 27410.1016/j.anucene.2012.08.029Suche in Google Scholar
14 Williams, M. M. R.: Exact solutions of the two-dimensional cell problem. Nuclear Science and Engineering173 (2012) 33Suche in Google Scholar
15 Hébert, A.: A simplified presentation of the multigroup analytic nodal method in 2-D Cartesian geometry. Annals of Nuclear Energy35 (2008) 214210.1016/j.anucene.2008.06.007Suche in Google Scholar
16 Barichello, L. B.; Cabrera, L. C.; Filho, J. F. Prolo: An analytical approach for a nodal scheme of two-dimensional neutron transport problems. Annals of Nuclear Energy38 (2011) 131010.1016/j.anucene.2011.02.004Suche in Google Scholar
17 Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.: Coupled hp-adaptivity for average current nodal expansion method in 2-D rectangular geometry. Progress in Nuclear Energy66 (2013) 2510.1016/j.pnucene.2013.01.009Suche in Google Scholar
18 Barichello, L. B.; Siewert, C. E.: A discrete-ordinates solution for a non-grey model with complete frequency redistribution. Journal of Quantitative Spectroscopy and Radiative Transfer62 (1999) 66510.1016/S0022-4073(98)00096-XSuche in Google Scholar
19 Filho, J. F. Prolo; Barichello, L. B.: An analytical discrete ordinates solution for a nodal model of a two-dimensional neutron transport problem. Proc. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), Sun Valley, ID, USA, (2013), CD-Rom, 2350Suche in Google Scholar
20 Tres, A.; Becker, C.; Cunha, R. D.; Barichello, L. B.: A deterministic approach for neutron transport in two-dimensional domains. Proc. of the International Congress of Mechanical Engineering, Ribeirão Preto, SP, Brasil, (2013), CD-Rom, 6922Suche in Google Scholar
21 Filho, J. F. Prolo: Spectro-Nodal Approaches for Multidimensional Particle Transport Problems, PhD Thesis (In Portuguese). Programa de Pós-Graduação em Matemática Aplicada, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil (2011)Suche in Google Scholar
22 Tsai, R. W.; Loyalka, S. K.: A numerical method for solving the integral equation of neutron transport: III. Nuclear Science and Engineering59 (1976) 536Suche in Google Scholar
23 Watanabe, Y.; Maynard, C. W.: The discrete cones method for two-dimensional neutron transport calculations. Transport Theory and Statistical Physics15 (1986) 13510.1080/00411458608210448Suche in Google Scholar
24 Lewis, E. E.; Miller, W. F.: Computational Methods of Neutron Transport, John Wiley & Sons, 1984Suche in Google Scholar
25 Yacout, A. M.: Private Communication (2012)Suche in Google Scholar
26 Filho, J. F. Prolo; Barichello, L. B.: General Expressions for Auxiliary Equations in Nodal Formulations. Proc. 23rd International Conference on Transport Theory, Santa Fe, NM, USA, (2013), CD-Rom.Suche in Google Scholar
© 2014, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- A model-based approach to operational event groups ranking
- Application of the method for uncertainty and sensitivity evaluation to results of PWR LBLOCA analysis calculated with the code ATHLET. Part 2: sensitivity analysis
- Statistical Large-Break LOCA analysis for PWRs with combined ECC injection
- Analysis of the CSF model for simulated loss of coolant accident conditions
- Performance of two fluid model based numeric tool with pressure and enthalpy as independent variables for simulation of two phase flow in axial and radial direction
- Pre-decommissioning complex engineering and radiation inspection of the WWR-M reactor
- Analysis of the source term formation in a severe accident initiated by end fitting failure in CANDU type reactors
- Neutron flux investigation on certain alternative fluids in a hybrid system by using MCNPX Monte Carlo transport code
- Analytical investigation of lignite and its ash samples taken from the Afşin-Elbistan coal basin in Turkey
- Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems
- T1 and U1 approximations to neutron transport equation in one-dimensional spherical geometry
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- A model-based approach to operational event groups ranking
- Application of the method for uncertainty and sensitivity evaluation to results of PWR LBLOCA analysis calculated with the code ATHLET. Part 2: sensitivity analysis
- Statistical Large-Break LOCA analysis for PWRs with combined ECC injection
- Analysis of the CSF model for simulated loss of coolant accident conditions
- Performance of two fluid model based numeric tool with pressure and enthalpy as independent variables for simulation of two phase flow in axial and radial direction
- Pre-decommissioning complex engineering and radiation inspection of the WWR-M reactor
- Analysis of the source term formation in a severe accident initiated by end fitting failure in CANDU type reactors
- Neutron flux investigation on certain alternative fluids in a hybrid system by using MCNPX Monte Carlo transport code
- Analytical investigation of lignite and its ash samples taken from the Afşin-Elbistan coal basin in Turkey
- Explicit formulation of a nodal transport method for discrete ordinates calculations in two-dimensional fixed-source problems
- T1 and U1 approximations to neutron transport equation in one-dimensional spherical geometry