On-site power system reliability of a nuclear power plant after the earthquake
-
A. Volkanovski
Abstract
Continuous and reliable sources of electrical energy are required during all modes of operation of a nuclear power plant in order to assure the safety of the plant. The electrical energy to the safety systems of the nuclear power plant is provided from the on-site power system. The objective of this paper is to analyze the nuclear power plant on-site power system reliability during normal operation and after the earthquakes with given intensity. The obtained results show the importance of the on-site power system reliability in general and battery supported section of the Class 1E power system in particular for the safety of the nuclear power plant. High level of reliability is obtained for the Class 1E and Non-1E power system during normal operation and safe shutdown earthquake. Obtained results show high level of reliability of a Class 1E power system after the earthquake with peak ground acceleration equal to the one measured at the Fukushima Daiichi nuclear power plant. Recommendation for revision of the current guideline for assessment of the acceptable station blackout duration capability is recommended considering the results of the analysis and identified deficiencies in the current guideline.
Kurzfassung
Eine kontinuierliche und zuverlässige elektrische Energieversorgung wird für alle Betriebszustände eines Kernkraftwerks benötigt, um die Sicherheit der Anlage zu gewährleisten. Die elektrische Energieversorgung der Sicherheitssysteme des Kernkraftwerks ist aus einem anlageninternen Stromnetz vorgesehen. Das Ziel dieser Arbeit ist es, die Zuverlässigkeit dieses internen Stromnetz während des normalen Betriebs und nach einem Erdbeben mit bestimmten Intensitäten zu analysieren. Die Ergebnisse der Analysen zeigen die Bedeutung der Zuverlässigkeit des anlageninternen Stromnetzes im Allgemeinen und der zusätzlichen Batterien (Klasse 1E) für bestimmte sicherheitstechnisch relevante Systeme des Kernkraftwerks. Die Ergebnisse zeigen eine hohe Zuverlässigkeit ist für die Klasse 1E und andere Systeme im normalen Betrieb und für eine sichere Abschaltung im Fall eines Erdbebens, für Systeme der Klasse 1E sogar im Fall eines Erdbebens mit einer Bodenbeschleunigung, wie sie am Fukushima Daiichi Kernkraftwerk Fukushima Daiichi gemessen wurde. Eine Überarbeitung der aktuellen Leitlinie für die Beurteilung der akzeptablen Dauer eines totalen Stromausfalls unter Berücksichtigung der Ergebnisse der Analyse und festgestellte Mängel in der aktuellen Leitlinie wird empfohlen.
References
1 Moller, N.; Hansson, S. O.: Principles of engineering safety: Risk and uncertainty reduction. Reliability Engineering & System Safety93 (2008) 798–80510.1016/j.ress.2007.03.031Search in Google Scholar
2 Vesely, W. E.; Apostalakis, G. E.: Developments in risk-informed decision-making for nuclear power plants. Reliability Engineering & System Safety.63 (1999) 223–22410.1016/S0951-8320(98)00036-2Search in Google Scholar
3 IEEE: IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations. IEEE Std 308-2001 (Revision of IEEE Std 308-1991), 2002Search in Google Scholar
4 IEEE: IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations. IEEE Std 323-2003 (Revision of IEEE Std 323-1983), 2004Search in Google Scholar
5 IEEE: IEEE Recommended Practice for Installation, Inspection, and Testing for Class 1E Power, Instrumentation, and Control Equipment at Nuclear Facilities. IEEE Std 336-2010 (Revision of EEE Std 336-2005), 2010Search in Google Scholar
6 IEEE: IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations. IEEE Std 344-2004 (Revision of IEEE Std 344-1987), 2005Search in Google Scholar
7 IEEE: IEEE Standard Criteria for Independence of Class 1E Equipment and Circuits. IEEE Std 384-2008 (Revision of IEEE Std 384-1992), 2008Search in Google Scholar
8 IEEE: IEEE Standard for Qualification of Class 1E Transformers for Nuclear Power Generating Stations. IEEE Std 638-1992, 1992Search in Google Scholar
9 IEEE: IEEE Guide for Assessing, Monitoring, and Mitigating Aging Effects on Class 1E Equipment Used in Nuclear Power Generating Stations-Corrigendum 1: Thermal Aging Model Corrections. IEEE Std 1205-2000/Cor 1-2006 (Corrigendum to IEEE Std 1205-2000), 2006Search in Google Scholar
10 U.S.NRC; Severe Accident Risks: An Assessment for Five U.S. Nuclear Power Plants-Final Summary Report, NUREG-1150, Washington, 1990Search in Google Scholar
11 MHI; Design Control Document for the US-APWR, MUAP-DC001. Mitsubishi Heavy Industries, Ltd., Tokyo, 2008Search in Google Scholar
12 AREVA; U.S. EPR Safety Analysis Report, 2007Search in Google Scholar
13 Nishio, M.; Fujimoto, H.: Study on Seismic PSA for a BWR in shutdown state, ANS PSA 2011 International Topical Meeting on Probabilistic Safety Assesment and Analysis. American Nuclear Society, Wilmington, NC, 2011Search in Google Scholar
14 USGS; The 03/11/2011 Mw9.0 Tohoku Japan Earthquake-Educational Slides, in: Center, N. E. I. (Ed.). U.S. Geological Survey, Denver, 2011Search in Google Scholar
15 U.S. NRC; NRC Information Notice on Tohoku-Taiheiyou-Oki Earthquake Effects on Japanese Nuclear Power Plants, Information Notice 2011-05, Washington, 2011Search in Google Scholar
16 TEPCO; Overview of the Earthquake & Tsunami and Nuclear Accident: The Great East Japan Earthquake and Current Status of Nuclear Power Stations, 2011Search in Google Scholar
17 T.N.D.o. Japan; The official report of the Fukushima Nuclear Accident Independent Investigation Commission. The National Diet of Japan, 2012Search in Google Scholar
18 Volkanovski, A.; Cepin, M.; Mavko, B.: Application of the fault tree analysis for assessment of power system reliability. Reliability Engineering & System Safety94 (2009) 1116–112710.1016/j.ress.2009.01.004Search in Google Scholar
19 IEEE; IEEE Gold BookTM: ANSI/IEEE STD 493-2007-Recommended Practice for the Design of Reliable Industrial & Commercial Power Systems. American National Standards, New York, 1980Search in Google Scholar
20 Dortolina, C. A.; Porta, J. J.; Nadira, R.: An Approach for Explicitly Modeling the Protective Relaying System in Substation Reliability Evaluation Studies. Ieee Transactions on Power Systems6 (1991) 1373–1379Search in Google Scholar
21 Save, P.: Substation Reliability-Practical Application and System Approach. Ieee Transactions on Power Systems10 (1995) 380–386Search in Google Scholar
22 Tsao, T. F.; Chang, H. C.: Composite reliability evaluation model for different types of distribution systems. Ieee Transactions on Power Systems18 (2003) 924–93010.1109/TPWRS.2003.811174Search in Google Scholar
23 Vega, M.; Sarmiento, H. G.: Algorithm to Evaluate Substation Reliability With Cut and Path Sets. Ieee Transactions on Industry Applications44 (2008) 1851–1858Search in Google Scholar
24 Galyean, W. J.; Close, J. A.; Fowler, R. D.: Reliability analysis of the INEL site power system using fault trees and the IRRAS-PC computer code. Reliability Engineering & System Safety25 (1989) 43–57Search in Google Scholar
25 Dong, Z. F.; Koval, D. O.; Propst, J. E.: Reliability of various industrial substations. Ieee Transactions on Industry Applications, 2004, vol. 40, p. 989–99410.1109/TIA.2004.830770Search in Google Scholar
26 Koval, D. O.; Ratusz, J. P.: Substation Reliability Simulation-Model. Ieee Transactions on Industry Applications29 (1993) 1012–101710.1109/28.245727Search in Google Scholar
27 Meeuwsen, J. J.; Kling, W. L.: Substation reliability evaluation including switching actions with redundant components. Ieee Transactions on Power Delivery12 (1997) 1472–1479Search in Google Scholar
28 Billinton, R.; Lian, G.: Monte-Carlo Approach to Substation Reliability Evaluation. Iee Proceedings-C Generation Transmission and Distribution140 (1993) 147–15210.1049/ip-c.1993.0020Search in Google Scholar
29 Ferreira Brandao, A.: Reliability Reduction in Electrical Installations Due to Equipment Overload. Latin America, Transactions, IEEE (Revista IEEE America Latina)6 (2008) 74–8010.1109/TLA.2008.4461635Search in Google Scholar
30 Haarla, L.; Pulkkinen, U.; Koskinen, M.; Jyrinsalo, J.: A method for analysing the reliability of a transmission grid. Reliability Engineering & System Safety93 (2008) 277–28710.1016/j.ress.2006.10.025Search in Google Scholar
31 Eusgeld, I.; Kröger, W.; Sansavini, G.; Schläpfer, M.; Zio, E.: The role of network theory and object-oriented modeling within a framework for the vulnerability analysis of critical infrastructures. Reliability Engineering & System Safety94 (2009) 954–963Search in Google Scholar
32 Ang, A. H. S.; Pires, J. A.; Villaverde, R.: A model for the seismic reliability assessment of electric power transmission systems. Reliability Engineering & System Safety51 (1996) 7–2210.1016/0951-8320(95)00101-8Search in Google Scholar
33 Camensig, C.; Bresesti, L.; Clementel, S.; Salvetti, M.: Seismic risk evaluation for high voltage air insulated substations. Reliability Engineering & System Safety55 (1997) 179–19110.1016/S0951-8320(96)00107-XSearch in Google Scholar
34 ASME; Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications, ASME RA-S-2002, 2002Search in Google Scholar
35 NASA; Fault Tree Handbook with Aerospace Applications, 2002Search in Google Scholar
36 U.S.NRC; Proposed License Renewal Interim Staff Guidance LR-ISG-2008-01: Staff Guidance Regarding the Station Blackout Rule (10 CFR 50.63). Washington, 2008Search in Google Scholar
37 Westinghouse; Westinghouse AP1000 European Design Control Document, EPS-GW-GL-700, Pittsburgh, 2009Search in Google Scholar
38 U.S.NRC; General Design Criteria for Nuclear Power Plants, Criterion 17: Electric power systems, NRC Regulations, Title 10, Code of Federal Regulations, Part 50: Domestic Licensing of production and utilization facilities, Washington, 2010Search in Google Scholar
39 Relcon; Risk Spectrum Users Manual. Relcon Teknik, Sundbyberg, 1994Search in Google Scholar
40 IAEA; Component Reliability Data for use in Probabilistic Safety Assessment, IAEA-TECDOC-478, Vienna, 1988Search in Google Scholar
41 Oikawa, T.; Fukushima, S.; Takase, H.; Uchiyama, T.; Muramatsu, K.: Seismic Reliability Evaluation of Electrical Power Transmission Systems and its Effect on Core Damage Frequency, in: Gupta, A. (Ed.), Proceedings of the 16th International Conference on Structural Mechanics in Reactor Technology, Washington, 2001Search in Google Scholar
42 Pires, J. A.; Ang, A. H. S., Villaverde, R.: Seismic reliability of electrical power transmission systems. Nuclear Engineering and Design160 (1996) 427–439Search in Google Scholar
43 Park, Y. J.; Hofmayer, C. H.; Chokshi, N. C.: Survey of seismic fragilities used in PRA studies of nuclear power plants. Reliability Engineering & System Safety62 (1998) 185–195Search in Google Scholar
44 U.S. NRC; Policy, Technical, and Licensing Issues Pertaining to Evolutionary and Advanced Light-Water Reactor Designs, SECY-93-087, Washington, 1993Search in Google Scholar
45 Volkanovski, A.: Impact of offsite power system reliability on nuclear power plant safety, Doctoral Thesis, University of Ljubljana, Ljubljana, 2008Search in Google Scholar
46 Bilis, E. I.; Raschke, M.; Kroger, W.: Seismic response of the Swiss transmission grid, in: Ioannis Papazoglou, B. A., Enrico Zio (Ed.), ESREL 2010 Annual Conference. Taylor & Francis Group, Rhodes, Greece, 2010Search in Google Scholar
47 U.S. NRC; Station Blackout, Regulatory Guide 1.155, Washington, 1988Search in Google Scholar
48 U.S. NRC; Analyzing Operator Actions During Loss of AC Power Accident with Subsequent Loss of Secondary Heat Sink, NUREG/IA-0225, Washington, 2010Search in Google Scholar
49 Hodge, S. A.: BWR Reactor vessel bottom head failure modes, Boiling Water Reactor Severe Accident Technology (BWESAT) Program. Oak Ridge National Laboratory,Search in Google Scholar
50 Bin, S.; Koval, D.; Wilsun, X.; Salmon, J.; Shen, S.: An analysis of extreme-weather-related transmission line outages, Electrical and Computer Engineering, 1998. IEEE Canadian Conference on, 1998Search in Google Scholar
51 U.S. NRC; Reevaluation of Station Blackout Risk at Nuclear Power Plants, NUREG/CR-6890, Washington, 2005Search in Google Scholar
52 Long, L. W.: Analysis of Seismic Effects on Transmission Structures. IEEE Transactions on Power Apparatus and Systems93 (1974) 248–25410.1109/TPAS.1974.293940Search in Google Scholar
53 Kobayashi, M.: What we must learn from 1995: the great Kobe-earthquake considerations on the distribution power poles, Transmission and Distribution Conference, 1996, Proceedings, 1996 IEEE, 199610.1109/61.637016Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- External hazards – new threats to be assessed?
- Technical Contributions/Fachbeiträge
- External hazards – in focus after the Fukushima accident
- Reassessment of external events in view of the Fukushima accident
- On-site power system reliability of a nuclear power plant after the earthquake
- How to construct a seismic risk model?
- Seismic fragility of a reinforced concrete structure
- Probabilistic safety analysis of external floods – method and application
- Frequency of damage by external explosion hazards based on geographical information
- Case studies for evaluating conditional probabilities of external explosions
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- External hazards – new threats to be assessed?
- Technical Contributions/Fachbeiträge
- External hazards – in focus after the Fukushima accident
- Reassessment of external events in view of the Fukushima accident
- On-site power system reliability of a nuclear power plant after the earthquake
- How to construct a seismic risk model?
- Seismic fragility of a reinforced concrete structure
- Probabilistic safety analysis of external floods – method and application
- Frequency of damage by external explosion hazards based on geographical information
- Case studies for evaluating conditional probabilities of external explosions