The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method
-
H. Öztürk
Abstract
The reflected critical slab problem is studied using Chebyshev polynomials of second kind in one-speed neutron transport theory. The variation of the critical thickness of the medium is investigated both in the case of linearly anisotropic scattering and reflecting boundary conditions. The critical half-thicknesses of the slab are calculated for selected values of the reflection coefficient and the anisotropy parameter. Numerical results obtained for the critical half-thickness are identical with the ones obtained by the PN method and the ones available in literature.
Kurzfassung
In diesem Beitrag wird die eindimensionale Lösung der Neutronentransportgleichungen unter Verwendung von Chebyshev-Polynomen zweiter Ordnung für eine Platte und für eine Geschwindigkeitsklasse von Neutronen vorgestellt. Dabei wird die kritische Dicke des Mediums unter Berücksichtigung einer linearen anisotropen Streuung und reflektierender Randbedingungen betrachtet. Die so berechneten Werte für die kritischen Halbwertdicken sind identisch sowohl mit den in der Literatur verfügbaren Werten als auch mit den Ergebnissen aus der PN-Methode.
References
1 Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Suche in Google Scholar
2 Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 54310.1063/1.1703739Suche in Google Scholar
3 Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Suche in Google Scholar
4 Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 13510.1016/j.jqsrt.2005.11.011Suche in Google Scholar
5 Öztürk, H.; Anli, F.; Güngör, S.: TN method for the critical thickness of one-speed neutrons in a slab with forward and backward scattering. J. Quant. Spectros. Radiat. Trans.105 (2007) 21110.1016/j.jqsrt.2006.12.002Suche in Google Scholar
6 Szegö, G.: Orthogonal polynomials. American Society Providence, Rhode Island, 1967Suche in Google Scholar
7 Öztürk, H.; Anli, F.; Güngör, S.: Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering. Kerntechnik72 (2007) 74Suche in Google Scholar
8 Öztürk, H.: Study of the effect of anisotropic scattering on the critical slab problem in neutron transport theory using Chebyshev polynomials. Kerntechnik73 (2008) 284Suche in Google Scholar
9 Öztürk, H.: Modified UN method for the reflected critical slab problem with forward and backward scattering. Kerntechnik76 (2011) 142Suche in Google Scholar
10 Davison, B.: Neutron transport theory. London, Oxford University Press, 195810.1063/1.3062414Suche in Google Scholar
11 Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 138110.1088/0022-3727/25/10/001Suche in Google Scholar
12 Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc.: 1985Suche in Google Scholar
13 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Suche in Google Scholar
14 Lee, C. E.; Dias, M.P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann Nucl Energy11 (1984) 515–53010.1016/0306-4549(84)90076-8Suche in Google Scholar
15 Aranson, R.: Critical problems for bare and reflected slabs and spheres. Nucl. Sci. Eng.86 (1984) 150Suche in Google Scholar
16 Atalay, M. A.: The reflected slab and sphere criticality problem with anisotropic scattering in one-speed neutron transport theory. Prog. Nucl. Energy31 (1997) 22910.1016/0149-1970(95)00094-1Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Remarks on boiling water reactor stability analysis – part 2: stability monitoring
- Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti
- Heat transfer study of a submerged reactor channel under boil-off condition
- Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method
- Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER
- Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis
- Development of program DETSIM to simulate detector's full energy peak efficiency
- The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method
- A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code
- Cosmic ray angular distribution employing plastic scintillation detectors and flash-ADC/FPGA-based readout systems
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Remarks on boiling water reactor stability analysis – part 2: stability monitoring
- Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti
- Heat transfer study of a submerged reactor channel under boil-off condition
- Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method
- Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER
- Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis
- Development of program DETSIM to simulate detector's full energy peak efficiency
- The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method
- A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code
- Cosmic ray angular distribution employing plastic scintillation detectors and flash-ADC/FPGA-based readout systems