Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method
-
T. H. Woo
Abstract
It has been proposed to extend the life of nuclear power plants (NPPs) for the economic purpose. Especially, the primary systems in reactor are considered in the thermohydraulic and neutronic aspect, which is related to the safety system. The electric power and the lifespan of components are expressed as economic situation. In addition, political considerations are given by the presidential change and the nuclear non-proliferation characteristics. The dynamical investigation using system dynamics (SD) shows the effective time for the life extension of the NPPs by Monte-Carlo simulations. This non-linear algorithm is incorporated with the feedback loop of the event sequences. The expected event is related to the past event, which affects to the dynamical simulations of lifetime in the NPPs. In the conclusions, the safety guarantee as well as the economic profit in the re-use of long term operated power plants is presented, which is mentioned as the transient time between 2019 and 2021 in this paper.
Kurzfassung
Aus ökonomischen Gesichtspunkten wurden Laufzeitverlängerungen von KKW vorgeschlagen. In diesem Beitrag wird die auf Monte-Carlo-Berechnungen basierende Systemdynamik-Methode (SD) vorgestellt, die zur Beurteilung der Laufzeitverlängerung von KKW herangezogen werden kann. Dabei werden Thermohydraulik und Neutronik in Bezug zum Sicherheitssystem, elektrische Leistung und Betriebsdauer der Komponenten in Bezug zur Wirtschaftlichkeit gesetzt. Zusätzlich werden politische Einflüsse (Regierungswechsel, Nichtverbreitung von Kernwaffen) berücksichtigt. Der daraus entstehende nichtlineare Algorithmus wird mit Ereignisszenarien und deren Konsequenzen in Verbindung gesetzt und gelöst. Als Ergebnis werden die Jahre zwischen 2019 und 2021 als beste Zeitspanne zur Entscheidung über die Verlängerung der Laufzeit von KKW abgeleitet.
References
1 IAEA: Cost drivers for the assessment of nuclear power plant life extension. IAEA-TECDOC-1309, Vienna (a2002)Search in Google Scholar
2 IAEA: Nuclear Power-Life Cycle Management Managing Nuclear Knowledge Nuclear Safety. the 46the Regular Session of the IAEA General Conference (b2002)Search in Google Scholar
3 Energy Information Administration (EIA): Int. energy. Ann.2006 (2008)Search in Google Scholar
4 Energy Information Administration (EIA): World Energy Projections Plus (2009)Search in Google Scholar
5 Nuclear Energy Agency (NEA): Ad hoc Expert Group on the Impact of Nuclear Power Plant Life Extension (2007)Search in Google Scholar
6 Jones, R. D.; Thomas, P. J.: Calculating the life extension achieved by reducing nuclear accident frequency. Proc. saf. and env. prot.87 (2009) 81–8610.1016/j.psep.2008.10.002Search in Google Scholar
7 Hong, S. Y.; Jang, C.; Jeong, I. S.: Experience of the integrity assessment of the highly embrittled reactor pressure vessel for the life extension. Nuc. Eng. and Des.214 (2002) 163–17210.1016/S0029-5493(02)00025-0Search in Google Scholar
8 De Backer, F.; Schoss, V.; Maussner, G.: Investigations on the evaluation of the residual fatigue life-time in austenitic stainless steels. Nuc. Eng. and Des.206, 201–219 (2001)10.1016/S0029-5493(00)00435-0Search in Google Scholar
9 Forrester, J. W.: Industrial Dynamics. Productivity press (1961)Search in Google Scholar
10 Forrester, J. W.: Urban Dynamics. Pegasus Communications (1969)Search in Google Scholar
11 Forrester, J. W.: World Dynamics. Wright-Allen Press (1971)Search in Google Scholar
12 Forrester, J. W.: Principles of Systems, 2nd Ed.Pegasus Communications (1968)Search in Google Scholar
13 Forrester, J. W.: Collected Papers of Jay W. Forrester. Pegasus Communications (1975)Search in Google Scholar
14 Eberlein, R. L.: Simplification and understanding of models. Sys. Dyn. Rev.5 (1989) 51–6810.1002/sdr.4260050105Search in Google Scholar
15 Kampmann, C. E.: Feedback loop gains and system behavior. Proceedings of the 1996 International System Dynamics Conference Boston. System Dynamics Society, Albany, NY (1996) 260–263Search in Google Scholar
16 Mojtahedzadeh, M. T.: A path taken: computer-assisted heuristics for understanding dynamic systems. PhD dissertation, Rockefeller College of Public Affairs and Policy, State University of New York at Albany, Albany, NY (1997)Search in Google Scholar
17 Schmidt, M. J.; Gary, M. S.: Combining Systems and Conjoint Analysis for Strategic Decision Making with an Automotive High-Tech SME. Sys. Dyn. Rev.18 (2002) 359–37910.1002/sdr.257Search in Google Scholar
18 Liehr, M.; Größler, A.; Klein, M.; Milling, M.: Cycles in the Sky: Understanding and Managing Business Cycles in the Airline Market. Sys. Dyn. Rev.17 (2001) 311–33210.1002/sdr.226Search in Google Scholar
19 Radzicki, M.; Taylor, R.: U.S. Department of Energy's Introduction to System Dynamics. A Systems Approach to Understanding Complex Policy Issues. Ver.1 (1997)Search in Google Scholar
20 CANES: A Benchmark Study of Computer Codes for System Analysis of the Nuclear Fuel Cycle. MIT-NFC-TR-105, MIT, MA (2009)Search in Google Scholar
21 Boucher, L.; and et al.: COSI: The Complete Renewal of the Simulation Software for the Fuel Cycle Analysis. Proc. Conf. ICONE 14, Miami (2006)10.1115/ICONE14-89314Search in Google Scholar
22 Tsibulskiy, V.; Subbotin, S.; Khoroshev, M.; Depisch, F.: DESAE (Dynamic Energy System- Atomic Energy) Integrated Computer Model for Performing Global Analysis in INPRO Assessment Studies. Proc. Conf. ICONE 14, Miami (2006)10.1115/ICONE14-89865Search in Google Scholar
23 Stanisv, N.; Milan, P.: Nuclear Power Plant Aging and Life Extension: Safety Aspects. IAEA Bulletin (1987)Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Remarks on boiling water reactor stability analysis – part 2: stability monitoring
- Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti
- Heat transfer study of a submerged reactor channel under boil-off condition
- Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method
- Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER
- Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis
- Development of program DETSIM to simulate detector's full energy peak efficiency
- The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method
- A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code
- Cosmic ray angular distribution employing plastic scintillation detectors and flash-ADC/FPGA-based readout systems
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Remarks on boiling water reactor stability analysis – part 2: stability monitoring
- Irradiation tests on PHWR type fuel elements in TRIGA research reactor of INR Pitesti
- Heat transfer study of a submerged reactor channel under boil-off condition
- Dynamic assessment for life extension of nuclear power plants (NPPs) using system dynamics (SD) method
- Effect of using FLiBe and FLiNaBe molten salts bearing plutonium fluorides on the neutronic performance of PACER
- Evaluations of the CCFL and critical flow models in TRACE for PWR LBLOCA analysis
- Development of program DETSIM to simulate detector's full energy peak efficiency
- The criticality calculations for one-speed neutrons in a reflected slab with anisotropic scattering using the modified UN method
- A detailed investigation of interactions within the shielding to HPGe detector response using MCNP code
- Cosmic ray angular distribution employing plastic scintillation detectors and flash-ADC/FPGA-based readout systems