Startseite Technik Simulation of load following mode of operation for a natural circulation pressure tube type BWR
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simulation of load following mode of operation for a natural circulation pressure tube type BWR

  • R. Kumar , A. J. Gaikwad , A. D. Contractor , A. Srivastava , H. G. Lele und K. K. Vaze
Veröffentlicht/Copyright: 19. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A new nuclear power reactor under design study is a vertical pressure tube type boiling light water cooled and heavy water moderated. One of the passive design features of this reactor is the heat removal through natural circulation of primary coolant at all power level with no primary coolant pumps. Nuclear plants are mainly base load units, but the proposed plant with various advance features has to operate in load following mode i.e. Reactor follows Turbine (in a limited range). In this mode, any alteration in turbine load results in the steam pressure change. The steam pressure error is fed to the Reactor Regulating System (RRS), which changes the reactor power to control the system pressure. To study this mode of plant operation, a plant simulation model with the feedbacks from various controllers has been developed using the RELAP5 code. This integrated plant model has been used for simulating the load-varying scenario for a change in plant load. All the process dynamics, modeling, design verification and performance issues are discussed in this paper.

Kurzfassung

Ein neuer Kernreaktor, der zur Zeit im Rahmen einer Auslegungsstudie untersucht wird, ist ein Druckröhrenreaktor mit vertikal verlaufenden Kühlkanälen, mit leichtem Wasser als Kühlmittel und schwerem Wasser als Moderator. Eines der passiven Sicherheitsmerkmale dieses Reaktors ist die Wärmeabfuhr durch Naturumlauf des Primärkühlmittels bei allen Leistungsstufen ohne Pumpen im Primärkühlmittelkreislauf. Der vorgeschlagene Reaktor hat verschiedene fortschrittliche Merkmale und arbeitet in Lastwechsel-Betriebsweise, d.h. im „reactor-follows-turbine“ Modus (im begrenzten Rahmen). Bei dieser Betriebsweise führt jede Änderung der Turbinenlast zu einer Änderung des Dampfdruckes. Der Dampfdruckfehler wird dem „Reactor Regulating System (RRS)“ zugeführt, das die Leistung des Reaktors ändert, um so den Druck im System zu kontrollieren. Zur Untersuchung dieser Betriebsweise wurde mit Hilfe des RELAP5 Codes ein Anlagensimulationsmodell entwickelt mit Feedback aus verschiedenen Kontrollsystemen. Dieses integrierte Anlagenmodell wurde verwendet zur Simulation des Lastwechsel-Szenarios für eine Änderung der Anlagenlast. Die Prozessdynamik, die Modellierung, die Auslegungs-Verifizierung und Ausführungsfragen werden in diesem Beitrag diskutiert.

References

1 Sinha, R. K.; Kakodkar, A.: Design and development of the AHWR#151;the Indian thorium fuelled innovative nuclear reactor. Nuclear Engineering and Design236 (2006) 68370010.1016/j.nucengdes.2005.09.026Suche in Google Scholar

2 LiXiong; DichenLiu; XiShi; JieZhao; PingWu: Research and Analyse for Pressurized Water Reactor Plant into Power System Dynamics Simulation. Power and Energy Engineering Conference, APPEC 2009, Asia-Pacific, Digital Object Identifier: 10.1109/APPEEC.2009.491865310.1109/APPEEC.2009.4918653Suche in Google Scholar

3 MasashiTsuji; YuichiOcawa: Load follow-up control of PWR power plant by using an approximate Non-interactive control. IEE Transaction on Nuclear Science, Vol. NS-33, No. 4, August 198610.1109/TNS.1986.4334543Suche in Google Scholar

4 Khajavia, M. N.; Menhajb, M. B.; Suratgarc, A. A.: A neural network controller for load following operation of nuclear reactors. Annals of Nuclear Energy29 (2002) 75176010.1016/S0306-4549(01)00075-5Suche in Google Scholar

5 Fischer, G.; Sontheimer, F.; Ruyter, I.; Markgraf, J.: Experiments On The Load Following Behaviour of PWR Fuel Rods. Nuclear Engineering and Design108 (1988) 42943210.1016/0029-5493(88)90231-2Suche in Google Scholar

6 A Preliminary Report on Steam Pressure Control System, No. AHWR/NOTE/63714/Sr No 1/Rev.0, 2005Suche in Google Scholar

7 D'Auria, F.; Gabaraev, B.; Radkevitch, V.; Moskalev, A.; Uspuras, E.; Kaliatka, A.; Parisi, C.; Cherubini, M.; Pierro, F.: Thermal-hydraulic performance of primary system of RBMK in case of accidents. Nuclear Engineering and Design238 (2008) 90492410.1016/j.nucengdes.2007.03.005Suche in Google Scholar

8 Misale, M.; Frogheri, M.; D'Auria, F.; Fontani, E. and Garcia, A.: Analysis of single-phase natural circulation experiments by system codes. International Journal of Thermal Sciences38 (1999) 97798310.1016/S1290-0729(99)00106-4Suche in Google Scholar

9 Kumar, R.; Gaikwad, A. J.; Lele, H. G.; Chakraborty, G.; Ghosh, A. K.; Kushwaha, H. S.: Performance Analysis Of Passive/Active Modes Of Hot Shutdown For A Natural Circulation Tube Type Boiling Water Reactor. 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference January 4–6, 2006, IIT Guwahati, IndiaSuche in Google Scholar

10 Gaikwad, A. J.; Vijayan, P. K.; Iyer, K.; Bhartiya, S.; Kumar, R.; Lele, H. G.; Ghosh, A. K.; Kushwaha, H. S.; Sinha, R. K.: Effect of Loop Configuration on Steam Drum Level Control for a Multiple Drum Interconnected Loops Pressure Tube Type Boiling Water Reactor. IEEE Transactions on Nuclear Science Vol. 56, no. 6, December 200910.1109/TNS.2009.2033682Suche in Google Scholar

Received: 2010-10-19
Published Online: 2013-04-19
Published in Print: 2011-08-01

© 2011, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110130/pdf
Button zum nach oben scrollen