Startseite Technik Steam drum process dynamics and level control of a pressure tube BWR
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Steam drum process dynamics and level control of a pressure tube BWR

  • A. J. Gaikwad , P. K. Vijayan , S. Bhartiya , R. Kumar , H. G. Lele und R. K. Sinha
Veröffentlicht/Copyright: 5. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Advanced Heavy Water Reactor (AHWR) is a pressure tube type light water cooled heavy water moderated Boiling Water Reactor (BWR) with natural circulation at all power levels. It has parallel inter-connected loops with 452 boiling channels in the Main Heat Transport (MHT) system configuration. These multiple (four) interconnected loops influence the Steam Drum (SD) level control adversely. Such a behavior has not been reported in the open literature. The MHT configuration has been chosen based on comprehensive overall design requirements and certain Postulated Initiated Events (PIEs). This does not allow the partitioning of the Common Reactor Inlet Header (CRIH). If partitioning of the CRIH into four segments is allowed then, it will make each loop independent. Then the SD level control problems subside as the unaccounted interaction among the loops is eliminated. It has also been observed that the open loop response is stable, non-oscillatory and non-diverging for a step change in the feed flow rates. A conventional individual 3-element SD level controller cannot account for the highly coupled and interacting behaviors, of the four loops and SD levels. To overcome these interactions it is proposed to interconnect all the four steam drums in the liquid and vapor regions respectively. The influence of the interconnect configuration and the level controller are studied in detail to find a robust solution. The response obtained for unsymmetrical core power disturbances shows that the SD levels do not diverge and quickly settle to the set points assigned with SD interconnect. The proposed scheme also works well for most of the PIEs considered.

Kurzfassung

Der Advanced Heavy Water Reactor (AHWR) ist ein schwerwassermoderierter Druckröhrenreaktor, der im Naturumlauf betrieben wird. Die Leistungsübertragung findet in vier parallelen, untereinander verbundenen Loops mit 452 leichtwassergekühlten Kanälen statt. Diese Loops beeinflussen die Füllstandsregelung der in jedem Loop enthaltenen Dampftrommeln. In diesem Beitrag wird die Entwicklung dieser Füllstandsregelung im Detail beschrieben. Dabei wurde eine Konfiguration gewählt, bei der alle vier Dampftrommeln sowohl bzgl. der flüssigen als auch bzgl. der dampfförmigen Phase verbunden wurden. Der Einfluss dieser Konfiguration auf das Anlagenverhalten und die Auswirkungen auf die Anforderungen an die Regelung wurden u.a. mit Rechnungen mit dem Programm RELAP5/MOD3.2 untersucht.

References

1 Avinash, J.; Gaikwad, P.; Vijayan, K.; Iyer, K.; Bhartiya, S.; Kumar, R.; Lele, H. G.; Ghosh, A. K., Kushwaha, H. S.; SinhaR. K.: Effect of Loop Configuration on Steam Drum Level Control for a Multiple Drum Interconnected Loops Pressure Tube Type Boiling Water Reactor. IEEE Transactions on Nuclear Science56 (2009) http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5341437&isnumber=5341423&tag=1.10.1109/TNS.2009.2033682Suche in Google Scholar

2 Yang Qiliang, G; XingJianchun; WangPing: Water Level Control of Boiler Drum Using One IEC61131–3-Based DCS. Proceedings of the 26th Chinese Control Conference, pp. 252255, July 26–31, 2007.Suche in Google Scholar

3 Flynn, M. E; O'Malley, M. J.: A Drum Boiler Model for Long Term Power System Dynamic Simulation. IEEE Transactions on Power Systems14 (1999) 209217.10.1109/59.744528Suche in Google Scholar

4 Wei, D.; Doster, J. M.; Mayo, C. W.: Steam Generator control in Nuclear Power Plants by water mass inventory. Nuclear Engineering and Design238 (2008) 859871.10.1016/j.nucengdes.2007.09.001Suche in Google Scholar

5 Arriaga-de-Valle, E.; Dieck-Assad, G.: Modeling and Simulation of a Fuzzy Supervisory Controller for an Industrial Boiler. SIMULATION82 (2006) 841850.10.1177/0037549707076910Suche in Google Scholar

6 YonghongHuang, NianpingLi, YangchunShil, YixunYil: Genetic Adaptive Control for Drum Level of a Power Plant Boiler. IMACS Multiconference on Computational Engineering in Systems Applications (CESA), Vol. 2, pp. 19651968, October 4–6, 2006.10.1109/CESA.2006.4281960Suche in Google Scholar

7 Andone, D. G.; Fagarasan, J. I.; Dobrescu, M. R.: Advanced Control of a Steam Generator. 3rd International IEEE Conference Intelligent Systems, pp. 338343, September 2006.Suche in Google Scholar

8 Mercango, M.; Doyle, F. J.: Distributed model predictive control of an experimental fourtank system. Journal of Process Control17 (2007) 297308.10.1016/j.jprocont.2006.11.003Suche in Google Scholar

9 Balaram, J.; Shen, C. N.; Lahey, R. T.: Muliltivariable Stability Margins For Boiling Water Nuclear Reactors: 21st IEEE Conference on Decision and Control, Vol. 21, pp. 10361041, Dec 1982.Suche in Google Scholar

10 Kim, D. H.: Nuclear Steam Generator Level Control by a Neural Network-Tuning 2-DOF PID Controller. ClMSA 2004–International Symposium an Computational Intelligence far Measurements and Applications, Boston MA, USA, pp. 168173, 14–16 July 2004.Suche in Google Scholar

11 D'Auria, F.; Gabaraev, B.; Radkevitch, V.; Moskalev, A.; Uspuras, E.; Kaliatka, A.; Parisi, C.; Cherubini, M.; Pierro, F.: Thermal-hydraulic performance of primary system of RBMK in case of accidents. Nuclear Engineering and Design238 (2008) 904924.10.1016/j.nucengdes.2007.03.005Suche in Google Scholar

12 Kaliatka, A.; Urbonavicius, E., Uspuras, E.: Approach to accident management in RBMK-1500. Nuclear Engineering and Design238 (2008) 241249.10.1016/j.nucengdes.2007.06.003Suche in Google Scholar

13 HiroyasuMochizuki, Mitsutaka H.Koike; TakaakiSakai: Core cool-ability of an ATR by heavy water moderator in situations beyond design basis accidents. Nuclear Engineering and Design144 (1993) 293303.10.1016/0029-5493(93)90145-YSuche in Google Scholar

14 Mita, S.; Akebi, M.; Sawamura, O.; Kondo, T.: Development of the Advanced Thermal Reactor in Japan. Nuclear Engineering and Design144 (1993) 283292.10.1016/0029-5493(93)90144-XSuche in Google Scholar

15 Misale, M.; Frogheri, M.; D'Auria, F.; Fontani, E.; Garcia, A.: Analysis of single-phase natural circulation experiments by system codes. International Journal of Thermal Sciences38 (1999) 977983.10.1016/S1290-0729(99)00106-4Suche in Google Scholar

16 Mousavian, S. K.; Misale, M.; D'AuriaF.; Salehi, M. A.: Transient and stability analysis in single-phase natural circulation. Annals of Nuclear Energy31 (2004) 11771198.10.1016/j.anucene.2004.01.005Suche in Google Scholar

17 Gartia, M. R.; Pilkhwal, D. S.; Vijayan, P. K.; Saha, D.: Analysis of metastable regimes in a parallel channel single phase natural circulation system with RELAP5/MOD3.2. International Journal of Thermal Sciences46 (2007) 10641074.10.1016/j.ijthermalsci.2006.11.016Suche in Google Scholar

18 Liu, T.-J.; Lee, C.-H.; Way, Y.-S.: IIST and LSTF counterpart test on PWR station blackout transient. Nuclear Engineering and Design167 (1997) 357373.10.1016/S0029-5493(96)01302-7Suche in Google Scholar

19 Gaikwad, A. J.; Kumar, R.; Vhora, S. F.; ChakrabortyG.; Venkat Raj, V.: Transient analysis Following Tripping of a Primary Circulating Pump for 500 MWe PHWR Power plant. IEEE Trans. Nucl. Sci.50 (2003) 288293. http://ieeexplore.ieee.org/iel5/23/26678/01190047.pdf?arnumber=1190047.10.1109/TNS.2003.809600Suche in Google Scholar

20 Kumar, R.; Gaikwad, A. J.; Vhora, S. F.; Chakraborty, G., Venkat Raj, V.: Logic Modification to Avoid ECCS Lineup in the PHT System During Thermal Shrinkage Transients of 220 MWe PHWR Nuclear Power Plant. IEEE Trans. Nucl. Sci.50 (2003) 12291237, http://ieeexplore.ieee.org/iel5/23/27446/01221949.pdf?tp=&isnumber=&arnumber=1221949.10.1109/TNS.2003.814938Suche in Google Scholar

21 Gaikwad, A. J.; Kumar, R.; Vhora, S. F.; Chakraborty, G.; Venkat Raj, V.: Selection of a Steam generator Pressure Control Program for a 500 MWe PHWR Pressurized Heavy Water Reactor Power plant through Transient Analysis. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 217, No A6 ISSN 0957–6509, pp. 631642, 2003, http://journals.pepublishing.com/content/y4206386770p2725/.10.1177/095765090321700609Suche in Google Scholar

22 Gaikwad, A. J. P.; Vijayan, K.; Bhartya, S.; Iyer, K.; Rajesh Kumar, A.; Contractor, D.; Lele, H. G.; Vhora, S. F.; Maurya, A. K.; Ghosh, A. K.; Kushwaha, H. S.: Effect of Coolant Inventories and Parallel Loop Interconnections on the Natural Circulation in Various Heat Transport Systems of a Nuclear Power Plant during Station Blackout. Science and Technology of Nuclear Installations, Article ID 458316, 11 pages, Volume 2008, http://www.hindawi.com/GetArticle.aspx?doi=10.1155/2008/458316.10.1155/2008/458316Suche in Google Scholar

Received: 2010-5-19
Published Online: 2013-05-05
Published in Print: 2010-11-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 13.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110099/html?lang=de
Button zum nach oben scrollen