Home Technology Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling
Article
Licensed
Unlicensed Requires Authentication

Prediction, analysis and solution of flow inversion phenomenon in a typical MTR reactor with upward core cooling

  • S. El-Din El-Morshedy
Published/Copyright: May 5, 2013
Become an author with De Gruyter Brill

Abstract

Research reactors of power greater than 20 MW are usually designed to be cooled with upward coolant flow direction inside the reactor core. This is mainly to prevent flow inversion problems following a pump coast down. However, in some designs and under certain operating conditions, flow inversion phenomenon is predicted. In the present work, the best-estimate Material Testing Reactors Thermal-Hydraulic Analysis program (MTRTHA) is used to simulate a typical MTR reactor behavior with upward cooling under a hypothetical case of loss of off-site power. The flow inversion phenomenon is predicted under certain decay heat and/or pool temperature values below the design values. The reactor simulation under loss of off-site power is performed for two cases namely; two-flap valves open and one flap-valve fails to open. The model results for the flow inversion phenomenon prediction is analyzed and a solution of the problem is suggested.

Kurzfassung

Forschungsreaktoren mit einer Leistung von mehr als 20 MW sind meist so aufgebaut, dass das Kühlmittel im Reaktorkern aufwärts strömt. Dies dient hauptsächlich der Vermeidung von Strömungsinversionsphänomenen nach dem Auslaufen einer Pumpe. Bei einigen Anordnungen und unter bestimmten Betriebsbedingungen werden jedoch Strömungsinversionsphänomene vorhergesagt. In der vorliegenden Arbeit wird das Analyseprogramm MTRTHA verwendet, um das Verhalten eines typischen Materialprüfungsreaktors zu simulieren mit aufwärts strömendem Kühlmittel im hypothetischen Fall eines Ausfalls der Stromversorgung. Das Strömungsinversionsphänomen wird vorhergesagt für bestimmte Werte der Restwärme und der Pool-temperatur, die unterhalb der Auslegungswerte liegen. Die Simulation wird für zwei Fälle durchgeführt: zwei Klappenventile öffnen und ein Klappenventil öffnet nicht. Die Rechenergebnisse für die Vorhersage der Strömungsinversionsphänomene werden analysiert und eine Lösung des Problems wird vorgeschlagen.

References

1 Bokhari, I. H.; Mahmood, T.: Analysis of Loss of Flow Accident at Pakistan Research Reactor-1. Annals of Nuclear Energy32 (2005) 19631968.10.1016/j.anucene.2005.07.006Search in Google Scholar

2 Housiadas, C.: Simulation of Loss-of-Flow Transients in Research Reactors. Annals of Nuclear Energy27 (2000) 16831693.10.1016/S0306-4549(00)00053-0Search in Google Scholar

3 Polkinghorne, S. T.: Validation of the ATR-SINDA Fuel Plate Model Using Advanced Test Reactor Start-up Data. Nuclear Technology108 (1994) 395412.Search in Google Scholar

4 Tichler, P.; Cheng, L.; Fauske, H.: Core cooling under accident conditions at the high-flux beam reactor. Transactions-of-the-American-Nuclear-Society63 (1991) 385386.Search in Google Scholar

5 Smith, R. S.; Woodruff, W. L.: Thermal-hydraulic aspects of flow inversion in a research reactor. Argonne National Lab., IL (USA), Reduced Enrichment for Research and Test Reactors (RERTR) program international meeting, 3–6 Nov 1986.Search in Google Scholar

6 MasashiHirano; YukioSudo: Analytical study on thermal-hydraulic behavior of transient from forced circulation to natural circulation in JRR-3, Journal-of-Nuclear-Science-and-Technology-Tokyo-Japan, Vol. 23(4), pp. 352368, Apr 1986.10.1080/18811248.1986.9734992Search in Google Scholar

7 El-Din El-Morshedy, S.: Transient Thermal Hydraulic Modeling for Off-Site Power Loss in Nuclear Reactors. PhD Thesis, Cairo University, Giza, Egypt, March 2002.Search in Google Scholar

8 ANS Standard Decay Energy Release Rates Following Shut-down of Uranium-Fueled Thermal Reactors, ANSI1971.Search in Google Scholar

9 Khater, H.; Abu-El-Maty, T.; El-Din El-Morshedy, S.: Thermal-Hydraulic Modeling of Reactivity Accident in MTR Reactors. Annals of Nuclear Energy34 (2007) 732742.10.1016/j.anucene.2007.03.012Search in Google Scholar

10 Dittus, F. W.; Boelter, L. M. K.: University of California, Berkeley, Publications on Engineering, Vol. 2, p. 443, 1930.Search in Google Scholar

11 Sieder, E. N.; Tate, G. E.: Ind. Eng. Chem.28 (1936) 1429.10.1021/ie50324a027Search in Google Scholar

12 Kreith, F.; Bohn, M. S.: Principles of Heat Transfer. West Publishing Company, Fifth Edition, 1993.Search in Google Scholar

13 Churchill, S. W.; Chu, H. H. S.: Correlating Equations for Laminar and Turbulent Free Convection from a Vertical Plate. Int. J. Heat Mass Transfer18 (1975).10.1016/0017-9310(75)90243-4Search in Google Scholar

14 Bergles, A. E.; Rohsenow, W. M.: The Determination of Forced-Convection Surface-Boiling Heat Transfers. Transactions of the ASME (Series C-Journal of heat Transfer)86 (1964) 365371.10.1115/1.3688697Search in Google Scholar

15 Chen, J. C.: A correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow. Industrial and engineering chemistry. Process Design and Development5 (1966) 322329.10.1021/i260019a023Search in Google Scholar

16 White, F. M.: Viscous Fluid Flow. Copyright © 1991, 1974 by McGraw-Hill, Inc.Search in Google Scholar

17 Collier, J. G.: Convective Boiling and Condensation. Mc Graw-Hill Internal book company, Second Edition, 1981.Search in Google Scholar

Received: 2010-7-28
Published Online: 2013-05-05
Published in Print: 2010-11-01

© 2010, Carl Hanser Verlag, München

Downloaded on 16.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110110/html
Scroll to top button