Startseite Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Adaptation of the FEMAXI-6 code and RBMK fuel rods model testing employing the best estimate approach

  • A. Marao , T. Kaliatka , A. Kaliatka und E. Ušpuras
Veröffentlicht/Copyright: 25. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper provides information about the possibility to apply the FEMAXI-6 code for RBMK-1500 reactors. New thermal properties and correlations responsible for thermal analysis (thermal conductivity and heat capacity) according to RBMK-1500 specification were included into the FEMAXI-6 code. The RBMK-1500 fuel rod model using the adapted FEMAXI-6 code was developed and tested by employing uncertainty and sensitivity analysis. The processes in fuel rods during normal plant operation were modelled. The results received were compared with calculations performed by specialists from the Kurchatov Institute (designers of RBMK). The reasonable agreement of both calculation results shows that the adapted FEMAXI-6 code and the developed model are suitable for future analysis of processes in fuel rods of RBMK-1500 reactors. Also this work demonstrates what sensitivity and uncertainty analysis can be used for the model development.

Kurzfassung

In diesem Beitrag werden die Anwendungsmöglichkeiten des FEMAXI-6-Codes für den Reaktortyp RBMK-1500 dargestellt. Die für die Anlage RBMK-1500 spezifischen thermischen Eigenschaften und Abhängigkeiten, (Wärmeleitfähigkeit und Wärmekapazität) wurden im FEMAXI-6-Code berücksichtigt. Unter Verwendung des angepassten FEMAXI-6-Codes wurde ein Brennelement-Modell für den Reaktor vom Typ RBMK-1500 entwickelt und unter Berücksichtigung von Unsicherheits- und Sensitivitätsanalysen getestet. Die Prozesse in den Brennelementen während des Normalbetriebs der Anlage wurden modelliert. Die erzielten Ergebnisse wurden mit den Berechnungen des Kurtchatov-Instituts (zuständig für die Auslegung von RBMK-Reaktoren) verglichen. Die entsprechende Übereinstimmung der Rechenergebnisse zeigt, dass der angepasste FEMAXI-6-Code und das entwickelte Modell für weitere Analysen von Prozessen in den Brennelementen von RBMK-1500 geeignet sind. Weiterhin wird in diesem Beitrag gezeigt, dass Unsicherheits- und Sensitivitätsanalysen für die Modell–Entwicklung verwendet werden können.


* E-mail:

References

1 Almenas, K.; Kaliatka, A.; Uspuras, E.: Ignalina RBMK-1500. A Source Book. Extended and Updated Version, Lithuanian Energy Institute, Kaunas, Lithuania, 1998Suche in Google Scholar

2 Suzuki, M.: Light Water Reactor Fuel Analysis Code FEMAXI-6 (Ver. 1), Japan Atomic Energy Research Institute, 2005Suche in Google Scholar

3 Ignalina NPP unit – 2 safety analysis report. Fuel assembly. Ignalina NPP report, 2005. PTO-0345-144V1 (In Russian)Suche in Google Scholar

4 Sonnenburg, H. G.; Hofer, E.; Kloos, A.: Development of methods for the analysis of the fuel rod behaviour in the high burnup regime. Final Report. GRS, 2002Suche in Google Scholar

5 Berna, G.; Alison, C.: Development of FUELSIM/MOD0 for the Detailed Analysis of LWR Fuel Rod Behavior under Normal Operation Conditions with Extended Burnup Fuel. Nippon Genshiryoku Kenkyujo JAERI journalL2150A, 1999Suche in Google Scholar

6 Lassmann, K.: TRANSURANUS “A fuel rod analysis code ready for use”. Journal of Nuclear Materials, 1992, Vol. 188, p. 29530210.1016/0022-3115(92)90487-6Suche in Google Scholar

7 Juseviciute, A.; Kaliatka, A.; Urbonavicius, E.: Simulation processes of RBMK-1500 nuclear fuel rods (In Lithuania). Power Engineering (lith. Energetika)53, (2007) 58–67Suche in Google Scholar

8 Juseviciute, A.: Simulation of processes in RBMK-1500 nuclear fuel elements (In Lithuania). Conference of Young Scientists on Energy Issues “CYSENI 2006”. Lithuanian Energy Institute, 8 May 2006Suche in Google Scholar

9 MATPRO-09. A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, USNRC TREE NUREG-1005, 1976Suche in Google Scholar

10 Analysis of maximum design basis accident in RBMK-1500 reactor with uranium–erbium fuel, Report 27.186 OT, RDIPE, Moscow, 1997Suche in Google Scholar

11 Pabarcius, R.: The analysis of influence of uncertainty and sensitivity of parameters results of modelling of transients, Lithuanian Energy Institute, 2006Suche in Google Scholar

12 Material properties of cladding and fuel pellets of VVER-1000. GK AE USSR. M., 1983Suche in Google Scholar

13 Zaimovsky, A. S.; Nikulina, A. V.; Reshetnikov, N. G.: Zirconium alloys in nuclear industry, Moscow, Atomizdat, 1982Suche in Google Scholar

14 Volkov, B. Yu.et al.: Material property library for H-1 alloy cladding, Preprint IAE-4941/11, 1989Suche in Google Scholar

15 Peletsky, V. E.; Grishchuk, A. P.; Musaeva, Z. A.: The Kinetic Properties of E-11-Reactor Alloy in the High Temperature Range, Teplofiz. Vys.32 (1994) 820–824 (In Russian), High Temperature 32 (1994) 766–770 (English translation)Suche in Google Scholar

16 Juseviciute, A.; Kaliatka, A.; Kaliatka, T.; Uspuras, E.: The FEMAXI-6 code adaptation for modeling the processes in RBMK-1500 fuel rods. (in Lithuanian), Power Engineering (lith. Energetika)55 (2009) 65–76Suche in Google Scholar

17 Definition of properties uranium–erbium fuel. Report, Nuclear Safety Institute of Russian Research Centre “Kurchatov Institute”, Moscow, Russia, 2005Suche in Google Scholar

18 Cahn, R. W.; Hasen, P.; Kramer, E. J.et al.: Materials Science and Technology, A Comprehensive Treatment, Volume 10A, Nuclear Materials, Part I, VCH Publishers Inc., New York, NY, 1994Suche in Google Scholar

19 RBMK Graphite Reactor: Uniform Configurations Of UO2 (1.8, 2.0, 2.4 % U235) Fuel Assemblies, And Configurations Of UO2 (2.0 % U235) Assemblies with Empty Channels, Water Columns, and Boron or Thorium Absorbers, with or without Water in Channels, LEU-COMP-THERM-060, Russian Research Center “Kurchatov Institute”, Under Subcontract to the Idaho National Engineering and Environmental LaboratorySuche in Google Scholar

20 Almenas, K.; Cesna, B.; Kaliatka, A.: Ignalina NPP, Lithuanian Energy Institute, 1993 (in Lithuanian)Suche in Google Scholar

21 Speer, M. A.: LWR Fuel Pin Performance During Burnup, Department of Nuclear Engineering, University of California, Berkeley, CA 94720–1730Suche in Google Scholar

22 Glaeser, H. G.: Uncertainty Evaluation of Thermal–Hydraulic Code Results. Int. Meeting on “Best–Estimate” Methods in Nuclear Installation Safety Analysis (BE-2000), Washington DC, USA, 2000Suche in Google Scholar

23 Kloos, M.; Hofer, E.: SUSA Version 3.2. User's Guide and Tutorial, GRS, Garching, 1999Suche in Google Scholar

24 A safety justification of fuel assembly with 2.8 % U235 enrichment with burnable erbium absorber, RDIPE report TAS-1245-71246, Moscow, 2004 (In Russian)Suche in Google Scholar

25 Wilks, S. S.: Statistical prediction with special reference to the problem of tolerance limits, Ann. Math. Statist.13 (1942) 400409Suche in Google Scholar

26 Guideline for Performing Code Validation within DOE International Nuclear Safety Center (INSC). International Nuclear Safety Center, 1997Suche in Google Scholar

Received: 2009-9-29
Published Online: 2013-04-25
Published in Print: 2010-04-01

© 2010, Carl Hanser Verlag, München

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110069/html
Button zum nach oben scrollen