Algorithmic determination of fuel rod cladding burst time at elevated temperatures
-
G. Sauer
Abstract
The integrity of fuel rod claddings during a loss of coolant accident (LOCA) is usually assessed by comparing calculated stresses or strains with the corresponding failure thresholds. Alternatively, the cladding integrity could also be evaluated on the basis of the time elapsed since the LOCA onset. To apply this assessment criterion the relationship between failure time and cladding loading must be available. The relationship can be established computationally by monitoring the evaluation of cladding inner and outer radius during the high temperature creep process. The cladding is classified as defective when the predicted inner radius equals or exceeds the anticipated outer radius. Using a suitable creep rate correlation it is shown which results are yielded by this procedure.
Kurzfassung
Die Integrität von Brennstabhüllrohren während eines Kühlmittelverluststörfalls (KMV) wird üblicherweise anhand eines Vergleichs berechneter Hüllrohrspannungen oder-dehnungen mit den entsprechenden Versagensschwellen bewertet. Alternativ könnte die Hüllrohrintegrität auch anhand der Zeit, die seit Beginn des KMV verstrichen ist, bewertet werden. Um dieses Beurteilungskriterium anwenden zu können, müssen die Beziehungen zwischen den Hüllrohrbelastungen und der Versagenszeit bekannt sein. Sie können rechnerisch mittels der Beobachtung der Entwicklung von Innen- und Außenradius des Hüllrohrs während des Hochtemperaturkriechvorgangs ermittelt werden. Das Hüllrohr wird als defekt klassifiziert, wenn der voraussichtliche Innenradius gleich oder größer dem voraus geschätzten Außenradius ist. Unter Benutzung einer geeigneten Kriechratenkorrelation wird gezeigt, zu welchen Ergebnissen dieses Verfahren führt.
References
1 Erbacher, F. J.; Neitzel, H. J.; Rosinger, H.; Schmid, H., Wiehr, K.: Burst criterion of zircaloy fuel claddings in a loss-of-coolant accident Zirconium in the nuclear industry; fifth conference, ASTM STP 754, D. G.Franklin (ed.), American Society for Testing and Materials, 1982, 271–28310.1520/STP37058SSearch in Google Scholar
2 Erbacher, F. J.; Leistikow, S.: A review of zircaloy fuel cladding behavior in a loss-of-coolant accident. Kernforschungszentrum Karlsruhe, KFK 3973, September 1985Search in Google Scholar
3 Shann, S.-H.; Adam, F. T.; Sell, H.-J.; Seibold, A.: Stress rupture and ballooning behavior of duplex cladding for nuclear fuel rods. Transactions, SMiRT 16, Washington DC, August 2001Search in Google Scholar
4 Karb, E. H.; Sepold, L.; Hofmann, P.; Petersen, C.; Schanz, G.; Zimmermann, H.: LWR fuel rod behavior during reactor tests under loss-of-coolant conditions: results of the FR2 in-pile test. Journal of Nuclear Materials107 (1982) 55–7710.1016/0022-3115(82)90558-XSearch in Google Scholar
5 Rosinger, H. E.; Bera, P. C.; Clendening, W. R.: Steady-state creep of zircaloy-4 fuel cladding from 940 to 1873 K. Journal of Nuclear Materials82 (1979) 286–29710.1016/0022-3115(79)90011-4Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- European clearinghouse on nuclear power plants operational experience feedback
- Investigation on primary side oriented accident management measures in a hypothetical station blackout scenario for a VVER-1000 pressurized water reactor
- Heat transfer to the building structures of the Ignalina NPP accident localisation system
- Algorithmic determination of fuel rod cladding burst time at elevated temperatures
- Development of a decommissioning strategy for the MR research reactor
- Neutron transmutation doping conceptual design
- Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization
- Chebyshev polynomials expansion method for solving the one-dimensional transport equation in spherical geometry
- Heuristic geometric “eigenvalue universality” in a one-dimensional neutron transport problem with anisotropic scattering
- An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry
- Accurate critical slab calculations for various degrees of anisotropy and for different reflection coefficients
- Technical Notes/Technische Mitteilungen
- The boundary problem in the 1D-CANDLE burn-up reactor
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- European clearinghouse on nuclear power plants operational experience feedback
- Investigation on primary side oriented accident management measures in a hypothetical station blackout scenario for a VVER-1000 pressurized water reactor
- Heat transfer to the building structures of the Ignalina NPP accident localisation system
- Algorithmic determination of fuel rod cladding burst time at elevated temperatures
- Development of a decommissioning strategy for the MR research reactor
- Neutron transmutation doping conceptual design
- Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization
- Chebyshev polynomials expansion method for solving the one-dimensional transport equation in spherical geometry
- Heuristic geometric “eigenvalue universality” in a one-dimensional neutron transport problem with anisotropic scattering
- An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry
- Accurate critical slab calculations for various degrees of anisotropy and for different reflection coefficients
- Technical Notes/Technische Mitteilungen
- The boundary problem in the 1D-CANDLE burn-up reactor