An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry
-
C. F. Segatto
, M. T. Vilhena and T. T. Gonçalez
Abstract
In this work a general analytical solution is reported, expressed in integral form for the time-dependent, one-dimensional SN transport equation in cartesian geometry valid for bounded and unbounded domains (0 < x <), using the double Laplace transform technique. The main idea consists in the application of the Laplace transform technique in time variable and the solution of the resulting equation by the LTSN method using appropriate boundary conditions for bounded and unbounded domain problems. We also report about the numerical simulations carried out.
Kurzfassung
Eine analytische Lösung für die eindimensionale, zeitabhängige SN Transportgleichung für beschränkte und unbeschränkte Gebiete in kartesischer Geometrie. In der vorliegenden Arbeit wird über eine allgemeine analytische Lösung berichtet, ausgedrückt in integraler Form, für die eindimensionale, zeitabhängige SN Transportgleichung in kartesischer Geometrie für beschränkte und unbeschränkte Gebiete (0 < x <) unter Verwendung des Laplace-Transformationsverfahrens. Die grundlegende Idee besteht in der Anwendung des zeitvariablen Laplace-Transformationsverfahrens und der Lösung der resultierenden Gleichungen mit Hilfe der LTSN Methode und geeigneter Randbedingungen für beschränkte und unbeschränkte Gebiete. Über die durchgeführten numerischen Simulationen wird ebenfalls berichtet.
References
1 Segatto, C. F.; Vilhena, M. T.; Gonçalez, T. T.: An Analytical Integral Formulation for the Time-Dependent SN Transport Equation in a Slab by The Double Laplace Transform Technique. Kerntechnik73 (2008) 176Search in Google Scholar
2 Filippone, W. L.; Ganapol, B. D.: Time-Dependent One-Dimensional Transport Calculations Using the Streaming Ray Method. Nuclear Science and Engineering83 (1982) 366–373Search in Google Scholar
3 Ganapol, B. D.; McKenty, P. W.: The Generation of Time-Dependent Neutron Transport Solutions in Infinite Media. Nuclear Science and Engineering64 (1977) 317–331Search in Google Scholar
4 Ganapol, B. D.: Solution of the time-dependent monoenergetic neutron transport equation in semi-infinite medium. Transport Theory and Statistical Physics7 (1978) 103–122Search in Google Scholar
5 Ganapol, B. D.: Time Dependent surface angular flux for a semi-infinite medium with specular reflection. Nuclear Science and Engineering80 (1982) 412–415Search in Google Scholar
6 Ganapol, B. D.; McKent, P. W.; Peddicord, K. L.: The generation of time-dependent neutron transport solutions in infinite media. Nuclear Science and Engineering64 (1977) 317–331Search in Google Scholar
7 Beynon, T. D.; Coleman, M.: Direct Solutions of Time-Dependent Neutron slowing down problems using numerical Laplace transforms in infinite media. Nuclear Science and Engineering64 (1973) 317–331Search in Google Scholar
8 Keller, P. M.; Lee, J. C.: A time-dependent collision probability method for one-dimensional space-time nuclear reactor kinetics. Nuclear Science and Engineering129 (1998) 124–148Search in Google Scholar
9 Oliveira, J. P.; Cardona, A. V.; Vilhena, M. T.: Solution of the One-dimensional Time-Dependent Discrete Ordinates Problem in a Slab by the Spectral and LTSN Method. Annals of Nuclear Energy29 (2002) 13–2010.1016/S0306-4549(01)00033-0Search in Google Scholar
10 El Wakil, S. A.; Degheidy, A. R.; Sallah, M.: Time-dependent neutron transport infinite media using Pomraning-Eddington approximation. Ann Nucl Energy32 (2006) 343–353Search in Google Scholar
11 Tureci, G.; Gulecyuz, M. C.; Tezcan, C.: HN solutions of the time dependent linear neutron transport equation for a slab and a sphere. Kerntechnik72 (2007) 66–73Search in Google Scholar
12 Abate, J.; Valkó, P. P.: Multi-Precision Laplace Transform Inversion. International Journal for Numerical Methods in Engineering60 (2004) 979–99310.1002/nme.995Search in Google Scholar
13 Valkó, P. P.; Abate, J.: Comparison of sequence accelerators for Gaver method of numerical Laplace transform inversion. International Journal of Computer Mathematics48 (2004) 629–636Search in Google Scholar
14 Pazos, R. P.; Thompson, M.; Vilhena, M. T.: Error bounds for spectral collocation method for linear Boltzmann equation. International Journal of Computational and Numerical Analysis and Applications1 (2002) 237–268Search in Google Scholar
15 Vilhena, M. T.; Pazos, R. P.: Convergence of the LTSN method: approach of C0 semigroups. Progress in Nuclear Energy34 (1999) 77–86Search in Google Scholar
16 Case, K.M.; Hoffmann, F.; Placzek, G.: Introduction to the theory of Neutron Discusion, 1, US Government Printing Office, Washington DC, 1953Search in Google Scholar
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- European clearinghouse on nuclear power plants operational experience feedback
- Investigation on primary side oriented accident management measures in a hypothetical station blackout scenario for a VVER-1000 pressurized water reactor
- Heat transfer to the building structures of the Ignalina NPP accident localisation system
- Algorithmic determination of fuel rod cladding burst time at elevated temperatures
- Development of a decommissioning strategy for the MR research reactor
- Neutron transmutation doping conceptual design
- Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization
- Chebyshev polynomials expansion method for solving the one-dimensional transport equation in spherical geometry
- Heuristic geometric “eigenvalue universality” in a one-dimensional neutron transport problem with anisotropic scattering
- An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry
- Accurate critical slab calculations for various degrees of anisotropy and for different reflection coefficients
- Technical Notes/Technische Mitteilungen
- The boundary problem in the 1D-CANDLE burn-up reactor
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- European clearinghouse on nuclear power plants operational experience feedback
- Investigation on primary side oriented accident management measures in a hypothetical station blackout scenario for a VVER-1000 pressurized water reactor
- Heat transfer to the building structures of the Ignalina NPP accident localisation system
- Algorithmic determination of fuel rod cladding burst time at elevated temperatures
- Development of a decommissioning strategy for the MR research reactor
- Neutron transmutation doping conceptual design
- Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization
- Chebyshev polynomials expansion method for solving the one-dimensional transport equation in spherical geometry
- Heuristic geometric “eigenvalue universality” in a one-dimensional neutron transport problem with anisotropic scattering
- An analytical solution for the one-dimensional time-dependent SN transport equation for bounded and unbounded domains in cartesian geometry
- Accurate critical slab calculations for various degrees of anisotropy and for different reflection coefficients
- Technical Notes/Technische Mitteilungen
- The boundary problem in the 1D-CANDLE burn-up reactor