Home Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering
Article
Licensed
Unlicensed Requires Authentication

Application of the UN method to the reflected critical slab problem for one-speed neutrons with forward and backward scattering

  • H. Öztürk , F. Anlı and S. Güngör
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

The UN method is used to solve the critical slab problem for reflecting boundary conditions in one-speed neutron transport theory. The isotropic scattering kernel with the combination of forward and backward scattering is chosen for the neutrons in a uniform finite slab. It is shown that the method converges rapidly with easily executable equations. The presented numerical results are compared with the results available in the literature.

Kurzfassung

Das Kritikalitätsproblem in der Eingruppen-Neutronentransporttheorie wird mit Hilfe der UN-Methode in ebener Geometrie mit Reflektorrandbedingungen gelöst. Zur Beschreibung der Neutronenstreuung in einer endlichen homogenen Platte wurde ein isotroper Streukern gewählt, der Vorwärts- und Rückwärtsstreuung kombiniert. Es wird gezeigt, dass diese auf leicht auszuführenden Gleichungen basierende Methode schnell konvergiert. Die vorgestellten numerischen Ergebnisse werden verglichen mit den in der Literatur verfügbaren Daten.


(corresponding author)

References

1Davison, B.: Neutron transport theory. London, Oxford University Press, 1958Search in Google Scholar

2Bell, G. I.; Glasstone, S.: Nuclear reactor theory. New York, VNR Company, 1972Search in Google Scholar

3Arfken, G.: Mathematical methods for physicists. London, Academic Press, Inc., 1985Search in Google Scholar

4Aspelund, O.: On a new method for solving the (Boltzmann) equation in neutron transport theory. PICG16 (1958) 530Search in Google Scholar

5Conkie, W. R.: Polynomial approximations in neutron transport theory. Nucl. Sci. Eng.6 (1959) 260Search in Google Scholar

6Yabushita, S.: Tschebyscheff polynomials approximation method of the neutron transport equation. J. Math. Phys.2 (1961) 543Search in Google Scholar

7Carlson, B.; Bell, G.: Proc. 2nd U.N. Int. Conf. Peaceful Uses of Atomic Energy, United Nations, New York16 (1958) 535Search in Google Scholar

8Siewert, C. E.; Williams, M. M. R.: The effect of anisotropic scattering on the critical slab problem in neutron transport theory using a synthetic kernel. J. Phys. D: Appl. Phys.10 (1977) 2031Search in Google Scholar

9Lee, C. E.; Dias, M. P.: Analytical solutions to the moment transport equations-I; one-group one-region slab and sphere criticality. Ann Nucl Energy11 (1984) 515Search in Google Scholar

10Aranson, R.: Critical problems for bare and reflected slabs and spheres. Nucl. Sci. Eng.86 (1984) 150Search in Google Scholar

11Sahni, D. C.; Sjöstrand, N. G.; Garis, N. S.: Criticality and time eigenvalues for one-speed neutrons in a slab with forward and backward scattering. J. Phys. D: Appl. Phys.25 (1992) 1381Search in Google Scholar

12Atalay, M. A.: The reflected slab and sphere criticality problem with anisotropic scattering in one-speed neutron transport theory. Prog. Nucl. Energy31 (1997) 229Search in Google Scholar

13Yasa, F.; Anli, F.; Güngör, S.: Eigenvalue spectrum with Chebyshev polynomial approximation of the transport equation in slab geometry. J. Quant. Spectrosc. Radiat. Transfer97 (2006) 5110.1016/j.jqsrt.2004.12.017Search in Google Scholar

14Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 12910.1016/j.jqsrt.2005.11.010Search in Google Scholar

15Anli, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectrosc. Radiat. Transfer101 (2006) 13510.1016/j.jqsrt.2005.11.011Search in Google Scholar

Received: 2006-12-14
Published Online: 2013-04-06
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, München

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100321/html?lang=en
Scroll to top button