Home Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants
Article
Licensed
Unlicensed Requires Authentication

Incineration of weapon grade plutoniumin a (DT) fusion driven hybrid reactor using various coolants

  • M. Übeyli and A. Acır
Published/Copyright: April 6, 2013
Become an author with De Gruyter Brill

Abstract

Reducing separated weapon grade (WG) plutonium is very crucial since this plutonium may be misused and/or released accidentally into the environment. Burning WG plutonium in nuclear reactors can help to solve this serious problem effectively. In this study, the incineration of WG plutonium mixed with thorium in a (DT) fusion driven high power density hybrid reactor was investigated for an operation period of 24 months. Furthermore, the effect of using different coolants on the burning of WG plutonium in the hybrid blanket was examined. Numerical calculations showed that WG plutonium can be denatured to reactor grade level within a very short time by using a high power density hybrid reactor. Moreover, addition of WG plutonium to thorium improved the neutronic performance of the reactor significantly.

Kurzfassung

Die Verringerung von waffenfähigem Plutonium ist sehr wichtig, da dieses Plutonium missbraucht und/oder durch einen Unfall in die Umwelt gelangen werden könnte. Die Verbrennung von waffenfähigem Plutonium in Kernreaktoren kann dieses Problem effektiv lösen helfen. In der vorliegenden Studie wurde die Verbrennung von waffenfähigem Plutonium gemischt mit Thorium in einem (DT) fusionsgetriebenen Hochleistungshybridreaktor untersucht für einem Betriebszeitraum von 24 Monaten. Des Weiteren wurde der Effekt der Verwendung verschiedener Kühlmittel auf die Verbrennung von waffenfähigem Plutonium in der Hybridummantelung untersucht. Numerische Berechnungen zeigen, dass waffenfähiges Plutonium mit Hilfe eines Hybridreaktors in sehr kurzer Zeit denaturiert werden kann auf ein Maß, so dass es für Reaktoren verwendbar ist. Darüber hinaus verbessert der Zusatz von waffenfähigem Plutonium zu Thorium die Neutroneneigenschaften des Reaktors erheblich.


(corresponding author)

References

1Hogan, W. J.; Bertel, E.: Introduction: Inertial fusion energy fundamentals, Energy from inertial fusion, Eds.: W. J.Hogan; J.Coutant; S.Nakai; V. B.Rozanov; G.Velarde, IAEA, Vienna (1995)Search in Google Scholar

2Berwald, D. H.et al.: Fission suppressed hybrid reactor fusion breeder. Lawrence Livermore National Laboratory, UCID-19327 (1982)Search in Google Scholar

3Greenspan, E.: Fusion-fission hybrid reactors, Advances in Science and Technology, Eds.: J. Lewins; M. Becker, Plenum Press16 (1984) 28910.1007/978-1-4613-2687-8_4Search in Google Scholar

4Lee, J. D.et al.: Feasibility study of a fission-suppressed tandem-mirror hybrid reactor: Fusion Breeder. Lawrence Livermore National Laboratory, CA, UCID-19327 (1982)Search in Google Scholar

5Moir, R. W.: The fusion breeder, submitted to the National Science Foundation Policy Workshop, Washington DC, March 4–5, Lawrence Livermore Laboratory, CA, UCRL-87290 (1982)Search in Google Scholar

6Raghep, M. H.et al.: Nuclear performance of molten salt fusion-fission symbiotic system for catalyzed D-D and D-T reactors, ORNL-TM-6560, Oak Ridge National Laboratory (1979)10.2172/6312800Search in Google Scholar

7Şahin, S.; Al-Kusayer, T.: Conceptual design studies of a cylindrical experimental ThO2 blanket with (D, D) Driver. Kerntechnik47 (1985) 259Search in Google Scholar

8Şahin, S.; Al-Kusayer, T. A.; Raoof, M. A.: Preliminary design studies of a cylindrical experimental hybrid blanket with deuterium-tritium driver. Fusion Technology10 (1986) 84Search in Google Scholar

9Şahin, S.; Yapıcı, H.: Neutronic analysis of a thorium fusion breeder with enhanced protection against nuclear weapon proliferation. Annals of Nuclear Energy26 (1999) 13Search in Google Scholar

10Şahin, S.; Özceyhan, V.; Yapıcı, H.: Proliferation hardening and power flattening of a thorium fusion breeder with triple mixed oxide fuel. Annals of Nuclear Energy28 (2001) 203Search in Google Scholar

11Şahin, S.; Yapıcı, H.; Baltaciog|ulu, E.; Al-Kusayer, T. A.: A hybrid reactor design concept driven by cold (D, T) fusion neutrons and fueled with metallic thorium. International Journal of Energy-Environment-Economics1 (1991) 167Search in Google Scholar

12Şahin, S.; Yapıcı, H.; Şahin, N.: Neutronic performance of proliferation hardened thorium fusion breeders. Fusion Engineering and Design54 (2001) 63Search in Google Scholar

13Şahin, S.; Yalçın, Ş.; Şahin, H. M.; Übeyli, M.: Neutronics analysis of HYLIFE-II blanket for fissile fuel breeding in an inertial fusion energy reactor. Annals of Nuclear Energy30 (2003) 669Search in Google Scholar

14Şahin, S.; Yalçın, S.; Şahin, H. M.; Übeyli, M.: Neutronic investigation of a hybrid version of the ARIES-RS fusion reactor. Annals of Nuclear Energy30 (2003) 245Search in Google Scholar

15Şahin, S.; Übeyli, M.: Modified Apex reactor as a fusion breeder. Energy Conversion and Management45 (2004) 1497Search in Google Scholar

16Şahin, S.; Übeyli, M.: LWR spent fuel transmutation in a high power density fusion reactor. Annals of Nuclear Energy31 (2004) 871Search in Google Scholar

17Übeyli, M.: On the tritium breeding capability of Flibe, Flinabe and Li20Sn80 in a fusion-fission (hybrid) reactor. Journal of Fusion Energy22 (2003) 5110.1023/B:JOFE.0000021555.70423.f1Search in Google Scholar

18Yapıcı, H.; S|,ahin, N.; Bayrak, M.: Investigation of neutronic potential of a moderated (D-T) fusion driven hybrid reactor fueled with thorium to breed fissile fuel for LWRs. Energy Conversion and Management41 (2000) 435Search in Google Scholar

19Yapıcı, H.; Übeyli, M.; Yalçın, Ş.: Neutronic analysis of Prometheus reactor fueled with various compounds of thorium and uranium. Annals of Nuclear Energy29 (2002) 1871Search in Google Scholar

20Yapıcı, H.; Übeyli, M.: Power flattening in Prometheus breeder reactor using nuclear fuel and waste actinide. Annals of Nuclear Energy30 (2003) 159Search in Google Scholar

21Yapıcı, H.; Ipek, O.; Übeyli, M.: Investigation of the performance parameters and temperature distribution in fuel rod dependent on operation periods and first wall loads in fusion-fission reactor system fueled with ThO2. Energy Conversion and Management44 (2003) 57310.1016/S0196-8904(02)00070-5Search in Google Scholar

22Yapıcı, H.: Study on transmutation of minor actinides discharged from high burn-up PWR-MOX spent fuel in the force-free helical reactor. Annals of Nuclear Energy30 (2003) 413Search in Google Scholar

23Yapıcı, H.: Burning and/or transmutation of transuraniums discharged from PWR-UO2 spent fuel and power flattening along the operation period in the force free helical reactor. Energy Conversion and Management44 (2003) 289310.1016/S0196-8904(03)00068-2Search in Google Scholar

24Übeyli, M.: Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor. Energy Conversion and Management45 (2004) 3219Search in Google Scholar

25Yapıcı, H.; Bayrak, M.: Neutronic analysis of denaturing plutonium in a thorium fusion breeder and power flattening. Energy Conversion and Management46 (2005) 1209Search in Google Scholar

26Yapıcı, H.; Demir, N.; Genç, G.; Çeper, B.: Study on spent fuel rejuvenation in Prometheus fusion reactor. Energy Conversion and Management47 (2006) 346Search in Google Scholar

27IAEA: Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity. International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-1349 (2003)Search in Google Scholar

28Ponomarev-Stepnoi, N.; Tsourikov, D.: Russian plutonium policy, Nuclear Engineering and Design173 (1997) 29310.1016/S0029-5493(97)00083-6Search in Google Scholar

29Ponomarev-Stepnoi, N.: Nuclear power of the 21st century. Nuclear Engineering and Design173 (1997) 213110.1016/S0029-5493(97)00085-XSearch in Google Scholar

30Koudriatsev, E.et al.: Use of weapons-grade plutonium from dismantled nuclear weapons for the peaceful objective of electric power generation. In: AIDA/MOX 2, Proceedings, GLOBAL 2003, vol. 2, New Orleans, LA, November 16–20, pp. 18551862 (2003)Search in Google Scholar

31Alekseev, P. N.; Ignatiev, V. V.; Konakov, S. A.et al.: Harmonization of fuel cycles for nuclear energy system with the use of molten salt technology. Nuclear engineering and Design173 (1997) 151Search in Google Scholar

32Akie, H.; Muromura, T.; Takano, H.; Matsuura, S.: A new fuel material for once-through weapons plutonium burning. Nuclear Technology107 (1994) 182Search in Google Scholar

33Yamashita, T.; Akie, H.; Nakano, Y.; Kuramoto, K.; Nitani, N.; Nakamura, T.: Current status of researchers on the plutonium rock-like oxide fuel and its burning in light water reactors. Progress in Nuclear Energy38 (2001) 327Search in Google Scholar

34Şahin, S.; Yıldız, K.; Şahin, H. M., et al.: Increased fuel bur up in a CANDU thorium reactor using weapon grade plutonium. Nuclear engineering and Design236 (2006) 1778Search in Google Scholar

35Greene, N. M.; Petrie, L. M.: XSDRNPM, A One-Dimensional Discrete-Ordinates Code for Transport Analysis, NUREG/CR-0200, Revision 5, 2, Section F3, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997)Search in Google Scholar

36Şahin, S.: Radiation Shielding Calculations For Fast Reactors (in Turkish), Gazi University, Publication # 169, Faculty of Science and Literature, Publication number 22, Ankara, Turkey (1991)Search in Google Scholar

37Jordan, W. C.; Bowman, S. M.: Scale Cross-Section Libraries, NUREG/CR-0200, Revision 5, 3, section M4, ORNL/NUREG/CSD-2/V3/R5, Oak Ridge National Laboratory (1997)Search in Google Scholar

38Greene, N. M.: BONAMI, Resonance Self-Shielding by the Bondarenko Method, NUREG/CR-0200, Revision 5, 2, section F1, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997)Search in Google Scholar

39Greene, N. M.; Petrie, L. M.; Westfall, R. M.: NITAWL-II, Scale System Module for Performing Resonance Shielding and Working Library Production, NUREG/CR-0200, Revision 5, 2, Section F2, ORNL/NUREG/CSD-2/V2/R5, Oak Ridge National Laboratory (1997)Search in Google Scholar

40Landers, N. F.; Petrie, L. M.: CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences, NUREG/CR-0200, Revision 5, 1, Section C4, ORNL/NUREG/CSD-2/V1/R5, Oak Ridge National Laboratory (1997)Search in Google Scholar

41Jaeger, R. G.; Blizard, E. P.; Chilton, A. B.; Grotenhuis, M.; Hönig, A.; Jaeger, Th. A.; Eisenlohr, H. H. (Eds): Shielding fundamentals and methods. Engineering Compendium on Radiation Shielding, I. Springer-Verlag, Berlin (1968)10.1007/978-3-662-25858-3Search in Google Scholar

42Meyer, W.; Loyalka, S. K.; Nelson, W. E.; Williams, R. W.: The homemade nuclear bomb syndrome. Nuclear Safety18 (1977) 427Search in Google Scholar

43Şahin, S.; Ligou, J.: The effect of the spontaneous fission of plutonium-240 on the energy release in a nuclear explosive. Nuclear Technology50 (1980) 88Search in Google Scholar

44Şahin, S.: Reply to the remarks on the plutonium-240 induced preignition problem in a nuclear device. Nuclear Technology54 (1980) 431Search in Google Scholar

45Şahin, S.: Addendum. Nuclear Technology58 (1982) 354Search in Google Scholar

46Übeyli, M.; Acır, A.: Utilization of thorium in a high power density hybrid reactor with innovative coolants. Energy Conversion and Management48 (2007) 576Search in Google Scholar

Received: 2006-10-11
Published Online: 2013-04-06
Published in Print: 2007-03-01

© 2007, Carl Hanser Verlag, München

Downloaded on 31.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100314/html?lang=en
Scroll to top button