Dynamics of radionuclides in forest ecosystems
-
M. Steiner
Abstract
The unique physiology and the layered structure of forest ecosystems result in dynamic transport and transfer processes which greatly differ from those in agricultural ecosystems. Radionuclides are retained in the upper organic horizons of forest soil for several decades and remain highly available for uptake by fungi and green plants. Contamination levels of mushrooms and game may therefore by far exceed those of agricultural produce. The efficient cycling of nutrients and radionuclides, which is characteristic for ecosystems poor in nutrients, can largely be attributed to forest soil with its complex and multi-layered structure and fungal activity. Fungi directly affect dynamic processes, playing a key role in the mobilization, uptake and translocation of nutrients and radionuclides. Fungal fruit bodies may be highly contaminated foodstuff and fodder. They are most likely the cause of the surprising trend of increasing contamination of wild boar which has been observed in the last few years in Germany. This paper is intended to give a qualitative survey of dynamic transport processes in forests and their relevance for radiation exposure to man.
Kurzfassung
Aufgrund der besonderen Lebensvorgänge, Stoffkreisläufe und der geschichteten Struktur von Wäldern unterscheiden sich die dynamischen Transport- und Transferprozesse stark von denen in landwirtschaftlichen Ökosystemen. Radionuklide verweilen mehrere Jahrzehnte in den oberen organischen Auflagehorizonten des Waldbodens und bleiben dort leicht pflanzenverfügbar. Die Kontamination von Pilzen und Wildbret kann daher wesentlich höher sein als in landwirtschaftlichen Erzeugnissen. Der für nährstoffarme Ökosysteme charakteristische Kreislauf von Nährstoffen und Radionukliden wird in besonderem Maß durch den komplexen, vielschichtigen Waldboden und den Einfluss von Pilzen geprägt. Pilze spielen eine Schlüsselrolle bei der Mobilisierung, Aufnahme und Translokation von Nährstoffen und Radionukliden und greifen somit direkt in dynamische Prozesse ein. Die Fruchtkörper von Pilzen können hoch kontaminierte Nahrungsquellen für Mensch und Tier sein. Sie sind sehr wahrscheinlich dafür verantwortlich, dass die Kontamination von Wildschweinen in Deutschland während der letzten Jahre erstaunlicherweise tendenziell zunahm. Dieser Beitrag gibt einen qualitativen Überblick über dynamische Transportprozesse und ihre Bedeutung für die Strahlenexposition des Menschen.
References
1 Rantavaara, A.; Wendt, J.; Vetikko, V.; Calmon, P.: Model description of the forest food chain and dose module FDMF. RODOS(WG3)-TN(99)-53 (1999).Suche in Google Scholar
2 Guillitte, O.; Koziol, M.; Debauche, A.; Andolina, J.: Plant-cover influence on the spatial distribution of radiocaesium deposits in forest ecosystems. p. 441–449 in: Transfer of Radionuclides in Natural and Semi-Natural Environments (G.Desmet, P.Nassimbeni, M.Belli, eds.). Elsevier Applied Science, London, New York, 1990.Suche in Google Scholar
3 Sombré, L.; Vanhouche, M.; de Brouwer, S.; Ronneau, C.; Lambotte, J. M.; Myttenaere, C.: Long-term radiocesium behaviour in spruce and oak forests. Sci. Total Environ.157 (1994) 59.10.1016/0048-9697(94)90565-7Suche in Google Scholar
4 Bunzl, K.; Schimmack, W.; Kreutzer, K.; Schierl, R.: Interception and retention of Chernobyl-derived 134Cs, 137Cs and 106Ru in a spruce stand. Sci. Total Environ.78 (1989) 77.10.1016/0048-9697(89)90023-5Suche in Google Scholar
5 Witherspoon, J. P.; TaylorJr., F. G.: Retention of a fallout simulant containing 134Cs by pine and oak trees. Health Phys.17 (1969) 825.10.1097/00004032-196912000-00007Suche in Google Scholar
6 Rafferty, B.; Brennan, M.; Dawson, D.; Dowding, D.: Mechanisms of 137Cs migration in coniferous forest soils. J. Environ. Radioactivity48 (2000) 131.10.1016/S0265-931X(99)00027-2Suche in Google Scholar
7 Rühm, W.; Kammerer, L.; Hiersche, L.; Wirth, E.: Migration of 137Cs and 134Cs in different forest soil layers. J. Environ. Radioactivity33 (1996) 63, and Erratum. J. Environ. Radioactivity 34 (1997) 103.10.1016/0265-931X(95)00069-MSuche in Google Scholar
8 Rafferty, B.; Dawson, D.; Kliashtorin, A.: Decomposition in two pine forests: the mobilisation of 137Cs and K from forest litter. Soil Biol. Biochem.29 (1997) 1673.10.1016/S0038-0717(97)00081-3Suche in Google Scholar
9 Yoshida, S.; Muramatsu, Y.: Accumulation of radiocesium in basidiomycetes collected from Japanese forests. Sci. Total Environ.157 (1994) 197.10.1016/0048-9697(94)90580-0Suche in Google Scholar
10 Römmelt, R.; Hiersche, L.; Schaller, G.; Wirth, E.: Influence of soil fungi (basidiomycetes) on the migration of Cs 134 + 137 and Sr 90 in coniferous forest soils. p. 152–160 in: Transfer of Radionuclides in Natural and Semi-Natural Environments (G.Desmet, P.Nassimbeni, M.Belli, eds.). Elsevier Applied Science, London, New York, 1990.Suche in Google Scholar
11 Bruchertseifer, F.; Steiner, M.; Hiersche, L.; Savkin, B.; Poppitz-Spuhler, A.; Wirth, E.: Dynamics of strontium-90 in forest ecosystems. Radioprotection (Colloques)37 (2002) C1–409.10.1051/radiopro/2002077Suche in Google Scholar
12 Muramatsu, Y.; Rühm, W.; Yoshida, S.; Tagami, K.; Uchida, S.; Wirth, E.: Concentrations of 239Pu and 240Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone. Environ. Sci. Technol.34 (2000) 2913.10.1021/es0008968Suche in Google Scholar
13 Mamikhin, S. V.: Mathematical model of 137Cs vertical migration in a forest soil. J. Environ. Radioactivity28 (1995) 161.10.1016/0265-931X(94)00053-YSuche in Google Scholar
14 Schell, W. R.; Linkov, I.; Myttenaere, C.; Morel, B.: A dynamic model for evaluating radionuclide distribution in forests from nuclear accidents. Health Phys.70 (1996) 318.10.1097/00004032-199603000-00002Suche in Google Scholar
15 Schell, W. R.; Linkov, I.; Belinkaia, E.; Morel, B.: Application of a dynamic model for evaluating radionuclide concentration in fungi. p. 2/752–2/754 in: Proceedings of the 1996 International Congress on Radiation Protection. Vienna, 1996.Suche in Google Scholar
16 Kirchner, G.: Applicability of compartmental models for simulating the transport of radionuclides in soil. J. Environ. Radioactivity38 (1998) 339.10.1016/S0265-931X(97)00035-0Suche in Google Scholar
17 Konshin, O. V.: Applicability of the convection-diffusion mechanism for modeling migration of 137Cs and 90Sr in the soil. Health Phys.63 (1992) 291.10.1097/00004032-199209000-00004Suche in Google Scholar
18 Konshin, O. V.: Mathematical model of 137Cs migration in soil: analysis of observations following the Chernobyl accident. Health Phys.63 (1992) 301.10.1097/00004032-199209000-00005Suche in Google Scholar
19 Horrill, A. D.; Kennedy, V. H.; Harwood, T. R.: The concentrations of Chernobyl derived radionuclides in species characteristic of natural and semi-natural ecosystems. p. 27–39 in: Transfer of Radionuclides in Natural and Semi-Natural Environments (G.Desmet, P.Nassimbeni, M.Belli, eds.). Elsevier Applied Science, London, New York, 1990.Suche in Google Scholar
20 Desmet, G. M.; Van Loon, L. R.; Howard, B. J.: Chemical speciation and bioavailability of elements in the environment and their relevance to radioecology. Sci. Total Environ.100 (1991) 105.10.1016/0048-9697(91)90375-OSuche in Google Scholar
21 Tikhomirov, F. A.; Shcheglov, A. I.; Sidorov, V. P.: Forests and forestry: radiation protection measures with special reference to the Chernobyl accident zone. Sci. Total Environ.137 (1993) 289.10.1016/0048-9697(93)90395-MSuche in Google Scholar
22 Myttenaere, C.; Schell, W. R.; Thiry, Y.; Sombre, L.; Ronneau, C.; van der Stegen de Schrieck, J.: Modelling of Cs-137 cycling in forests: recent developments and research needed. Sci. Total Environ.136 (1993) 77.10.1016/0048-9697(93)90298-KSuche in Google Scholar
23 Agapkina, G. I.; Tikhomirov, F. A.: Radionuclides in the liquid phase of the forest soils at the Chernobyl accident zone. Sci. Total Environ.157 (1994) 267.10.1016/0048-9697(94)90589-4Suche in Google Scholar
24 Agapkina, G. I.; Shcheglov, A. I.; Tikhomirov, F. A.; Merculova, L. N.: Dynamics of Chernobyl-fallout radionuclides in soil solutions of forest ecosystems. Chemosphere36 (1998) 1125.10.1016/S0045-6535(97)10183-7Suche in Google Scholar
25 Smith, S. E.; Read, D. J.: Mycorrhizal Symbiosis (2nd edition). Academic Press, London, 1997.Suche in Google Scholar
26 Rühm, W.; Yoshida, S.; Muramatsu, Y.; Steiner, M.; Wirth, E.: Distribution patterns for stable 133Cs and their implications with respect to the long-term fate of radioactive 134Cs and 137Cs in a semi-natural ecosystem. J. Environ. Radioactivity45 (1999) 253.10.1016/S0265-931X(98)00104-0Suche in Google Scholar
27 Delvaux, B.; Kruyts, N.; Cremers, A.: Rhizospheric mobilization of radiocesium in soils. Environ. Sci. Technol.34 (2000) 1489.10.1021/es990658gSuche in Google Scholar
28 International Atomic Energy Agency. Handbook of parameter values for the prediction of radionuclide transfer in temperate environments. Technical Reports Series No. 364. International Atomic Energy Agency, Vienna, 1994.Suche in Google Scholar
29 Frissel, M. J.: An update of the recommended soil-to-plant transfer factors of Sr-90, Cs-137 and transuranics. VIIIth Report of the Working Group Soil-to-Plant Transfer Factors. International Union of Radioecologists, 1992.Suche in Google Scholar
30 International Commission on Radiological Protection. Radionuclide release into the environment: assessment of doses to man (ICRP Publication 29). Annals of the ICRP2 (1979).Suche in Google Scholar
31 International Atomic Energy Agency. Modelling the migration and accumulation of radionuclides in forest ecosystems. Report of the Forest Working Group of the Biosphere Modelling and Assessment (BIOMASS) Programme, Theme 3. International Atomic Energy Agency, Vienna, 2002.Suche in Google Scholar
32 Steiner, M.; Linkov, I.; Yoshida, S.: The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. J. Environ. Radioactivity58 (2002) 217.10.1016/S0265-931X(01)00067-4Suche in Google Scholar
33 Rühm, W.; Steiner, M.; Kammerer, L.; Hiersche, L.; Wirth, E.: Estimating future radiocaesium contamination of fungi on the basis of behaviour patterns derived from past instances of contamination. J. Environ. Radioactivity39 (1998) 129.10.1016/S0265-931X(97)00055-6Suche in Google Scholar
34 Rühm, W.; Kammerer, L.; Hiersche, L.; Wirth, E.: The 137Cs/134Cs ratio in fungi as an indicator of the major mycelium location in forest soil. J. Environ. Radioactivity35 (1997) 129.10.1016/S0265-931X(96)00051-3Suche in Google Scholar
35 Ehlken, S.; Kirchner, G.: Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. J. Environ. Radioactivity58 (2002) 97.10.1016/S0265-931X(01)00060-1Suche in Google Scholar
36 Guillitte, O.; Fraiture, A.; Lambinon, J.: Soil-fungi radiocesium transfers in forest ecosystems. p. 468–476 in: Transfer of Radionuclides in Natural and Semi-Natural Environments (G.Desmet, P.Nassimbeni, M.Belli, eds.). Elsevier Applied Science, London, New York, 1990.Suche in Google Scholar
37 Ertel, J.; Ziegler, H.: Cs-134/137 contamination and root uptake of different forest trees before and after the Chernobyl accident. Radiat. Environ. Biophys.30 (1991) 147.10.1007/BF01219349Suche in Google Scholar
38 Bonnett, P. J. P.; Anderson, M. A.: Radiocaesium dynamics in a coniferous forest canopy: a mid-Wales case study. Sci. Total Environ.136 (1993) 259.10.1016/0048-9697(93)90314-VSuche in Google Scholar
39 Fawaris, B. H.; Johanson, K. J.: Radiocesium in soil and plants in a forest in central Sweden. Sci. Total Environ.157 (1994) 133.10.1016/0048-9697(94)90572-XSuche in Google Scholar
40 Barci-Funel, G.; Dalmasso, J.; Barci, V. L.; Ardisson, G.: Study of the transfer of radionuclides in trees at a forest site. Sci. Total Environ.173/174 (1995) 369.10.1016/0048-9697(95)04739-5Suche in Google Scholar
41 Haas, G.; Schupfner, R.; Müller, A.: Radionuclide uptake and long term behavior of Cs-137, Cs-134 and K-40 in tree rings of spruce. J. Radioanal. Nucl. Chem.194 (1995) 277.10.1007/BF02038424Suche in Google Scholar
42 Frissel, M. J.; Shaw, G.; Robinson, C.; Holm, E.; Crick, M.: Model for the evaluation of long term countermeasures in forests. p. 137–154 in: Radioecology and the Restoration of Radioactive-Contaminated Sites (F.F.Luykx, M.J.Frissel, eds.). Kluwer Academic Publishers, Dordrecht, 1996.10.1007/978-94-009-0301-2_11Suche in Google Scholar
43 Soukhova, N. V.; Fesenko, S. V.; Klein, D.; Spiridonov, S. I.; Sanzharova, N. I.; Badot, P. M.: 137Cs distribution among annual rings of different tree species contaminated after the Chernobyl accident. J. Environ. Radioactivity65 (2003) 19.10.1016/S0265-931X(02)00061-9Suche in Google Scholar
44 Rochon, P.; Paré, D.; Messier, C.: Development of an improved model estimating the nutrient content of the bole for four boreal tree species. Can. J. For. Res.28 (1998) 37.10.1139/x97-176Suche in Google Scholar
45 Linkov, I.; von Stackelberg, K.: Pilot elicitation of expert judgments on model parameters and research needs in forest radioecology. p. 409–417 in: Contaminated Forests: Recent Developments in Risk Identification and Future Perspectives (I.Linkov, W.R.Schell, eds.). Kluwer Academic Publishers, Dordrecht, 1999.Suche in Google Scholar
46 Riesen, T. K.; Fesenko, S.; Higley, K.: Perspectives in forest radioecology. p. 133–140 in: Contaminated Forests: Recent Developments in Risk Identification and Future Perspectives (I.Linkov, W.R.Schell, eds.). Kluwer Academic Publishers, Dordrecht, 1999.Suche in Google Scholar
47 Gadd, G. M.: Influence of microorganisms on the environmental fate of radionuclides. Endeavour20 (1996) 150.10.1016/S0160-9327(96)10021-1Suche in Google Scholar
48 Marschner, H.; Dell, B.: Nutrient uptake in mycorrhizal symbiosis. Plant and Soil159 (1994) 89.Suche in Google Scholar
49 Jakobsen, I.; Rosendahl, L.: Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist115 (1990) 77.10.1111/j.1469-8137.1990.tb00924.xSuche in Google Scholar
50 Lasat, M. M.: Phytoextraction of toxic metals, a review of biological mechanisms. J. Environ. Qual.31 (2002) 109.10.2134/jeq2002.0109Suche in Google Scholar
51 Zibold, G.; Drissner, J.; Kaminski, S.; Klemt, E.; Miller, R.: Time-dependence of the radiocaesium contamination of roe-deer: measurement and modelling. J. Environ. Radioactivity55 (2001) 5.10.1016/S0265-931X(00)00184-3Suche in Google Scholar
52 Karlén, G.; Johanson, K. J.; Bergström, R.: Seasonal variation in the activity concentration of 137Cs in Swedish roe deer and in their daily intake. J. Environ. Radioactivity14 (1991) 91.10.1016/0265-931X(91)90070-VSuche in Google Scholar
53 Kiefer, P.; Pröhl, G.; Müller, H.; Lindner, G.; Drissner, J.; Zibold, G.: Factors affecting the transfer of radiocaesium from soil to roe-deer in forest ecosystems of southern Germany. Sci. Total Environ.192 (1996) 49.10.1016/0048-9697(96)05291-6Suche in Google Scholar
54 Putyrskaya, V.; Klemt, E.; Paliachenka, H.; Zibold, G.: 137Cs accumulation in Elaphomyces granulatus Fr. and its transfer to wild boar. p. 1–5 in: Proceedings of the XXXIII Annual Meeting of ESNA/jointly organised with IUR working group soil-to-plant transfer (working group 3), Viterbo, August 27–31, 2003.Suche in Google Scholar
55 Environmental radioactivity and radiation exposure in 2003. Bulletin of the German parliament 15/3889 of 30 September 2004; Umweltradioaktivität und Strahlenbelastung im Jahr 2003. Bundestagsdrucksache 15/3889 vom 30.09.2004.Suche in Google Scholar
56 Golikov, V.; Barkovski, A.; Kulikov, V.; Balonov, M.; Rantavaara, A.; Vetikko, V.: Gamma ray exposure due to sources in the contaminated forest. p. 333–341 in: Contaminated Forests: Recent Developments in Risk Identification and Future Perspectives (I.Linkov, W.R.Schell, eds.). Kluwer Academic Publishers, Dordrecht, 1999.Suche in Google Scholar
© 2004, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Environmental radioactivity monitoring
- Technical Contributions/Fachbeiträge
- Airborne measurement of radioactivity by learjet 35A
- Air pollution forecasts of the German Weather Service for IMIS
- Monitoring and prediction of the dispersion of radioactive substances in German Federal waterways – concepts and methods
- Natural radionuclides in mineral water in Germany
- Dynamics of radionuclides in forest ecosystems
- Fast determination of strontium radionuclides in milk with the aid of the cryptand 2.2.2
- Strategy for taking measurements using the German Integrated Measuring and Information System (IMIS) in the case of a nuclear emergency
- Combination of measurements and model predictions after a release of radionuclides
- Results of the investigation on natural radiation exposure due to ingestion
- Review Paper/Übersichtsbeitrag
- Brennstabauslegung und Brennstabmodellierung – Teil 1
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Environmental radioactivity monitoring
- Technical Contributions/Fachbeiträge
- Airborne measurement of radioactivity by learjet 35A
- Air pollution forecasts of the German Weather Service for IMIS
- Monitoring and prediction of the dispersion of radioactive substances in German Federal waterways – concepts and methods
- Natural radionuclides in mineral water in Germany
- Dynamics of radionuclides in forest ecosystems
- Fast determination of strontium radionuclides in milk with the aid of the cryptand 2.2.2
- Strategy for taking measurements using the German Integrated Measuring and Information System (IMIS) in the case of a nuclear emergency
- Combination of measurements and model predictions after a release of radionuclides
- Results of the investigation on natural radiation exposure due to ingestion
- Review Paper/Übersichtsbeitrag
- Brennstabauslegung und Brennstabmodellierung – Teil 1