Home Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling
Article
Licensed
Unlicensed Requires Authentication

Al-Si piston alloy behavior under combined mechanical and thermal cyclic loading with superimposed high-frequency thermal cycling

  • Uwe Gutermuth , Dejan Schuster and Wolfgang Ißler
Published/Copyright: November 2, 2018
Become an author with De Gruyter Brill

Abstract

On pistons for diesel direct injection engines, the thermally high loaded bowl rim is exposed to high-cycle mechanical and high-cycle thermal loading during each combustion event in addition to the thermal cycling induced by variable engine loading, e. g. between idle and full load. This combined loading at various overall temperatures during engine operation contributes to material damage and finally to a limited service life. In the past, the high-cycle thermal loading has neither been experimentally investigated nor incorporated into a numerical model for lifetime estimation. The work described in this paper deals with the setup of an experimental test procedure on samples taken from components for which the effects of slow temperature cycling, fast temperature cycling and mechanical cyclic fatigue loading can be combined in different ratios. The aim of the investigation is to characterize the sample lifetime with respect to varied test conditions in order to differentiate alloy- or process-related material variations in support of process and material development.

Kurzfassung

Es wurde ein innovatives Prüfverfahren entwickelt und zum Patent angemeldet, das die mechanische und thermische Beanspruchung an intermittierend thermisch beaufschlagten Komponenten realitätsnah einer Werkstoffprobe bzw. einer direkt aus dem Bauteil entnommenen Probe aufprägt. Erstmals wird der zusätzliche Einfluss der oberflächennahen hochzyklischen thermischen Beanspruchung auf die Gesamtschädigung im Versuch nachgebildet und nachgewiesen, dass sich hierdurch die Lebensdauer gegenüber einer reinen TMF+HCF-Belastung signifikant reduziert. Die Prüfmethode erlaubt in kurzer Zeit einen Vergleich zwischen verschiedenen Legierungsvarianten zu erstellen und liefert ein Ranking, das mit motorischen Ergebnissen korreliert. Im Vergleich zum Motor fehlt in der vorgestellten Prüfmethode noch die Abbildung der bei der Verbrennung ablaufenden chemischen Prozesse; allerdings ist zu erwarten, dass dieser Einfluss auf die Lebensdauer für Aluminiumwerkstoffe gering bis vernachlässigbar sein wird. Für eisenbasierte Werkstoffe kann dagegen die Oxidation bzw. Zunderbildung nicht vernachlässigt werden.


*Correspondence Address, Dr.-Ing. Wolfgang Ißler, Abt. REL, MAHLE International GmbH, Pragstr. 54, 70376 Stuttgart, Germany, E-mail:

Dipl.-Ing. (FH) Uwe Gutermuth, born in 1984, received his Diploma as a mechanical engineer at the Technische Hochschule Mittelhessen in Friedberg, Germany. Since 2012, he has been working for Mahle International GmbH, Stuttgart, Germany, in the field of component testing and experimental oil flow studies.

Dr.-Ing. Dejan Schuster, born in 1977, received his Diploma as a mechanical engineer in 2003 and his PhD at the University of Stuttgart, Germany. Since 2014, he has been responsible for the materials, tribological and component testing group within the central laboratories of Mahle International GmbH, Stuttgart.

Dr.-Ing. Wolfgang Ißler, born in 1957, studied mechanical engineering at the University of Stuttgart, Germany, and G. Washington University Campus in Hampton, Virginia, USA. In 1989 he received his PhD at the University of Stuttgart. For more than 30 years, he has been working for Mahle GmbH and Mahle International GmbH in Stuttgart. He is manager of the central laboratories at Mahle TechCenter Stuttgart.


References

1 MAHLE GmbH (Ed.): Pistons and engine testing, 2nd Edition, Springer Fachmedien, Wiesbaden, Germany (2016)Search in Google Scholar

2 FVV Final Report of Research Project 987: Damage and lifetime, FVV-Heft 980, Frankfurt/Main, Germany (2013) (in German)Search in Google Scholar

3 FVV Final Report of Research Project 750: Non-stationary thermal and mechanical loading in engines, FVV-Heft 765, Frankfurt/Main, Germany (2002) (in German)Search in Google Scholar

4 C. P.Ding, R.Honza, B.Böhm: Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine, Applied Physics B123 (2017), No. 11010.1007/s00340-017-6694-ySearch in Google Scholar

5 U.Gutermuth, W.Ißler, D.Schuster, Procedure to simulate operating conditions of an ICE piston particularly at the combustion bowl, Patent pending. DE102017203490, filed 03.03.2017, (in German, German title: Verfahren zum Simulieren von Betriebsbedingungen eines Kolbens, insbesondere im Bereich der Kolbenmulde, in einer Brennkraftmaschine)Search in Google Scholar

Published Online: 2018-11-02
Published in Print: 2018-11-15

© 2018, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111247/html
Scroll to top button