Startseite Recycling of LM25 aluminum alloy scraps
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recycling of LM25 aluminum alloy scraps

  • Chandragandhi Bhagyanathan , Palanisamy Karuppuswamy , Raman Raghu , Soundar Gowtham und Manickam Ravi
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

These days, a lot of metal scraps are generated by the automobile industry since the use of vehicles is increasing globally. As the production of automobile increases, the use of aluminum alloys has been increasing in automobile applications. Since the resources for the production of primary aluminum are getting scarce and the production of primary aluminum is highly expensive, production of components using secondary aluminum alloy in the form of scraps is highly essential. The present study deals with the re-melting of aluminium alloy scraps and the production of secondary aluminum alloy through a gravity die casting process. An investigation of its microstructure, chemical composition and mechanical properties such as hardness, tensile strength and an impact test have been performed and compared with the properties of primary and standard aluminum alloy. Porosity of secondary aluminum alloy is observed macroscopically. In addition a radiograph test was performed to study the internal defects of the secondary aluminum alloy.

Kurzfassung

In der heutigen Zeit wird von der Automobilindustrie sehr viel Metallschrott generiert, zumal der Bedarf an Fahrzeugen weltweit ansteigt. Mit der Produktion von Automobilen wächst auch die Verwendung von Alumniumlegierungen im Bereich des Fahrzeugbaues. Da die Resourcen für die Produktion von Primäraluminium zurückgehen und die Produktion von Primäraluminium sehr teuer ist, ist die Produktion von Sekundäraluminium aus Schrott sehr wichtig. Daher beschäftigt sich die diesem Beitrag zugrunde liegende Studie mit der Wiedererschmelzung von Schrott aus Alumniumlegierungen mittels des Kokillengusses. Es wurden Untersuchungen der Mikrostruktur, der chemischen Zusammensetzung und der mechanischen Eigenschaften, wie der Härte, der Zugfestigkeit, der Schlagzähigkeit durchgeführt und mit den Eigenschaften der Standard- und Primäraluminiumlegierungen verglichen. Die Porösität der sekundären Aluminiumlegierung wurde makroskopisch und mittels Radiografie ebenfalls untersucht, um die internen Imperfektionen der sekundären Aluminiumlegierung zu detektieren.


*Correspondence Address, Associate Prof. Dr. C. Bhagyanathan, Sri Ramakrishna Engineering College, Vattamalaipalayam, Coimbatore-641022, India, E-mail: ,

Chandragandhi Bhagyanathan is an Associate Professor at Sri Ramakrishna Engineering College, Coimbatore, India. He received his PhD in Mechanical Engineering at Anna University, Chennai. He completed his M.E in Production Engineering at PSG College of Technology, Coimbatore and obtained his B. E. in Mechanical Engineering at Sri Ramakrishna Engineering College, Coimbatore. He has 9 years of teaching experience, 5 years of experience in industry and also has 2 years of research experience.

Palanisamy Karuppuswamy is a Professor and Head of Mechanical Engineering at Sri Ramakrishna Engineering College, Coimbatore, India. He received his Ph.D in Mechanical Engineering at PSG College of Technology, Coimbatore under Anna University, Chennai. He completed his M.E in Production Engineering at PSG College of Technology, Coimbatore and obtained his B. E. in Mechanical Engineering at Coimbatore Institute of Technology, Coimbatore. He has 18 years of teaching experience, 7 years of experience in industry and 10 years of research experience.

Raman Raghu, is an Assistant Professor at Sri Ramakrishna Engineering College, Coimbatore, India. He completed his M.E (Industrial Metallurgy) at PSG College of Technology, Coimbatore, India and his B.E (Mechanical Engineering) from the A. C. College of Engineering and Technology, Karaikudi, India. He has two years of research experience and one year of teaching experience.

Soundar Gowtham, is currently pursuing his Ph.D. at TWI Ltd, Cambridgeshire, England. He completed his Master's at the University of Sheffield, UK and his B. E. at Vellore Institute of Technology, India.

Manickam Ravi, is a Senior Principal Scientist at National Institute for Interdisciplinary Science and Technology (NIIST), Council of Scientific & Industrial Research (CSIR), Kerala, India. He received his Ph.D. at Indian Institute of Science, Bangalore. He completed his M.Sc (Engg.) (Metallurgy) at Indian Institute of Science, Bangalore, and his B.E (Metallurgy) from the University of Madras. He has three years of industrial experience and 29 years of research experience.


References

1 S.Eperjesi, M.Matvija, L.Eperjesi, M.Votjko: Evaluation of cracking causes of AlSi5Cu3 alloy castings, Archives of Metallurgy and Materials59 (2014), No. 3, pp. 1089109210.2478/amm-2014-0187Suche in Google Scholar

2 D.Brungs: Light weight design with light metal castings, Materials & Design18 (1997), No. 4–6, pp. 28529110.1016/S0261-3069(97)00065-4Suche in Google Scholar

3 J.Cui, H. J.Roven: Recycling of automotive aluminium, Transactions of Nonferrous Metals Society of China20 (2010), pp. 2057206310.1016/S1003-6326(09)60417-9Suche in Google Scholar

4 G.Ozer, S.Burgucu, M.Marsoglu: A study on the recycling of aluminium alloy 7075 scrap, Materials Testing, 54 (2012) No. 3, pp. 17517810.3139/120.110309Suche in Google Scholar

5 H. AminiMashhadi, A.Moloodi, M.Golestanipour, E. Z. V.Karimi: Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux, Journal of Materials Processing Technology209 (2009), pp. 3138314210.1016/j.jmatprotec.2008.07.020Suche in Google Scholar

6 E.David, J.Kopac: Use of separation and impurity removal methods to improve aluminium waste recycling process, Materials today: Proceedings2 (2015), pp. 5071507910.1016/j.matpr.2015.10.098Suche in Google Scholar

7 K.Logozar, G.Radonjic, M.Bastic: Incorporation of reverse logistics model into in-plant recycling process: a case of aluminium industry, Resources Conservation & Recycling49 (2006), pp. 496710.1016/j.resconrec.2006.03.008Suche in Google Scholar

8 J. A. S.Green: Aluminum Recycling and Processing for Energy Conservation and Sustainability, ASM International, Materials Park, Ohio, USA (2007)Suche in Google Scholar

9 G.Ozer, C.Yuksel, Z. Y.Comert, Kerem AltugGuler: The effects of process parameters on the recycling efficiency of used aluminium beverage cans, Materials testing for recycling Technologies55 (2013), No. 5, pp. 39640010.3139/120.110448Suche in Google Scholar

10 K. S.Das, J. A. S.Gren: Aluminum Industry and Climate Change- Assessment and Responses, Journal of Materials62 (2010), No. 2, pp. 273110.1007/s11837-010-0027-5Suche in Google Scholar

11 E.Tillova, M.Chalupova, L.Hurtalova: Evolution of Phases in a Recycled Al-Si Cast Alloy During Solution Treatment (Intech) (2011), pp. 41110.5772/34542Suche in Google Scholar

12 E.Tillova, M.Chalupova, K.Borko, L.Kucharikov: Changes of fracture surface in recycled A356 cast alloy, Materials Today: Proceedings3 (2016), pp. 1183118810.1016/j.matpr.2016.03.009Suche in Google Scholar

13 S. K.Das, J. A. S.Green, J. G.Kaufman: The development of recycle-friendly automotive aluminum alloys, Journal of the Minerals, Metals & Materials Society59 (2007), No. 11, pp. 475110.1007/s11837-007-0140-2Suche in Google Scholar

14 Z. K.Liu: Effect of impurities on alloys, Energy Efficiency and Renewable Energy, US Department of Energy, Washington, USA (2003)Suche in Google Scholar

15 J. Z.Gronostajki, H.Marciniak, A.Matuszak, M.Samuel: Aluminium ferro-chromium composites produced by recycling of chips, Journal of Material Processing Technology119 (2001), pp. 25125610.1016/S0924-0136(01)00966-9Suche in Google Scholar

16 G.Gaustad, E.Olivetti, R.Kirchain: Improving aluminum recycling: A survey of sorting and impurity removal, Technologies, Resources, Conservation and Recycling58 (2012), pp. 798710.1016/j.resconrec.2011.10.010Suche in Google Scholar

17 S. N. AbRahim, M. A.Lajis, S.Ariffin: A Review on Recycling Aluminum Chips by Hot Extrusion Process, Procedia CIRP26 (2015), pp. 76176610.1016/j.procir.2015.01.013Suche in Google Scholar

18 H.Puga, J.Barbosa, D.Soares, F.Silva, S.Ribeiro: Recycling of aluminium swarf by direct incorporation in aluminium melts, Journal of Materials Processing Technology209 (2009), pp. 5195520310.1016/j.jmatprotec.2009.03.007Suche in Google Scholar

19 M.Samuel: A new technique for recycling aluminium scrap, Journal of Material Processing Technology135 (2003), pp. 11712410.1016/S0924-0136(02)01133-0Suche in Google Scholar

20 L.Hurtalova, E.Tillova, M.Chalupova: Microstructural and Vickers Microhardness Evolution of Heat Treated Secondary Aluminium Cast Alloy, Key Engineering Materials586 (2014), pp. 13714010.4028/www.scientific.net/KEM.586.137Suche in Google Scholar

21 S.Asavavisithchai, N.Jareankieathbovorn, A.Srichaiyaperk: Recycling of Aluminium Alloy Scraps by Pressure-Assisted Investment Casting for Aluminium Foam Manufacture, Materials Testing54 (2012), No. 6, pp. 39039410.3139/120.110343Suche in Google Scholar

22 L.Zhao, Y.Pan, H.Liao, Q.Wang: Degassing of aluminum alloys during re-melting, Materials Letters66 (2012), pp. 32833110.1016/j.matlet.2011.09.012Suche in Google Scholar

23 LM25 (EN 1706 AC-42000)Aluminium Casting Alloy Available: http://www.nortal.co.uk/LM25/ (accessed on 22 Aug 2017)Suche in Google Scholar

24 T. S.Srivatsan, G.Guruprasad, V. K.Vesudevan: The quasi static deformation and fracture behaviour of aluminum alloy 7150, Materials and Design29 (2008), pp. 74275110.1016/j.matdes.2007.01.006Suche in Google Scholar

25 S.Michna: Aluminium materials and technologies from A to Z (ADIN) (2007)Suche in Google Scholar

26 J.Nampoothiri, B.Raj, K. R.Ravi: Role of ultrasonic treatment on microstructural evolution in A356/TiB2 In-Situ Composite, Transactions of Indian Institute of Metals68 (2012), No. 6, pp. 1101110610.1007/s12666-015-0653-2Suche in Google Scholar

27 J. A.Taylor: Iron-containing intermetallic phase in Al-Si based casting alloys, Procedia Materials Science1 (2012), pp. 193310.1016/j.mspro.2012.06.004Suche in Google Scholar

28 S. S. Sreejakumara, R. M.Pillai, T. P. D.Rajan, B. C.Pai: Effects of individual and combined additions of Be, Mn, Ca, and Sr on the solidification behaviour, structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy, Material Science and EngineeringA 460-461 (2007), pp. 56157310.1016/j.msea.2007.01.082Suche in Google Scholar

29 F.Paray, B.Kulunk, J. E.Gruzleski: Impact properties of Al-Si foundry alloys, International Journal of Cast Metals Research13 (2000), pp. 173710.1080/13640461.2000.11819385Suche in Google Scholar

30 Z.Li, A. M.Samuel, F. H.Samuel, C.Ravindran, S.Valtierra, H. W.Doty: Parameters controlling the performance of AA319-type alloys part I: Tensile properties, Materials Science and EngineeringA 367 (2004), pp. 9611010.1016/j.msea.2003.09.090Suche in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111223/html
Button zum nach oben scrollen