Startseite Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system

  • Ruizhen Xie , Zhengguang Chen , Chen Feng , Bin He , Fuli Ma , Pengju Han und Y. Frank Chen
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The EIS behavior, corrosiveness, and seepage structure of sand of varied water content were studied by means of electrochemical impedance spectroscopy under the three-electrode system. The results show that the effect of void geometry on the impedance modulus disappears at the high frequency range. However, the impedance modulus is greatly affected by the pore geometry and the effect is greater for standard sand with increased randomness when the frequency is under 5 Hz. The pore structure of standard sand increases Re by an order of magnitude and the increase is more obvious when water content is low. By contrast, Rt decreases with increasing water content. The corrosiveness of the sand system increases with increasing water content. The electrochemical process of a wet sand system shifts from a kinetic control process to a material transfer control process as frequency changes from a high to a low range. The hydraulic radius, a parameter of the seepage structure, fluctuates between 0.01 and 0.03 mS. The magnitude of W, showing a change in tortuosity T, fluctuates between 10−5 and 10−6.

Kurzfassung

Für den vorliegenden Beitrag wurde das elektrochemische Impedanzverhalten, die Aggressivität bezüglich Korrosion und die Versicherungsstruktur von Sanden mit verschiedenen Wassergehalten untersucht, indem das Verfahren der elektrochemischen Impedanzspektroskopie mit dem Drei-Elektroden-System zum Einsatz. Die Ergebnisse zeigen, dass die Auswirkung der Porengeometrie auf den Impedanzmodul im hochfrequenten Bereich verschwindet. Dem gegenüber wird der Impedanzmodul sehr durch die Porengeometrie beeinflusst, und dieser Effekt ist größer für Standardsande mit einer größeren Zufälligkeit wenn die Frequenz unter 5 Hz beträgt. Die Porenstrukture der Standardsande Re nimmt um eine Größenordnung zu und diese Zunahme ist umso offensichtlicher, wenn der Wassergehalt niedrig ist. Dem gegenüber nimmt Rt mit zunehmendem Wassergehalt ab. Die Aggressivität bezüglich Korrosion des Sandsystems nimmt mit zunehmendem Wassergehalt zu. Der elektrochemische Prozess des nassen Sandsystems verschiebt sich von einem kinetisch kontrollierten Prozess zu einem materialkontrollierten Prozess, wenn sich die Frequenz von einem hohen zu einem niedrigen Bereich verändert. Der hydraulische Radius, ein Parameter für die Versickerungsstruktur, fluktuiert zwischen 0,01 und 0,03 mS. Die Größe von W, das die Veränderung der Tortuosität T anzeigt, fluktuiert zwischen 10−5 und 10−6.


*Correspondence Address, Prof. Dr. Pengju Han, School of Civil Engineering, Taiyuan University of Technology, No.79, Yingze West Street, Taiyuan 030024, Shanxi Province, China

Ruizhen Xie, born in 1991, is a PhD student at Taiyuan University of Technology, China. She obtained her bachelor's degree in Material Processing and Control Engineering from Shanxi Datong University in Datong, China, in 2014. Her primary research area is geotechnical engineering.

Zhengguang Chen, born in 1996, is a junior student at Taiyuan University of Technology, China. He is majoring in Civil Engineering.

Chen Feng, born in 1997, is a junior student at Taiyuan University of Technology, China. She is majoring in civil engineering.

Dr. Bin He, born in 1985, is a lecturer at Taiyuan University of Technology, China. He obtained his doctoral degree in Geotechnical Engineering from the same university in 2016. He has been a visiting scholar of the Monash University, in Melbourne Australia. His study focuses on the corrosive and mechanical properties of civil and steel materials.

Dr. Fuli Ma, born in 1987, is a lecturer at Taiyuan University of Technology, China. She obtained her PhD degree in Civil Engineering at the same University. Her primary research area is mechanics and microstructure of loess.

Prof. Dr. Pengju Han, born in 1981, is Professor at Taiyuan University of Technology, China. He obtained his doctorate degree in Geotechnical Engineering from the same university in 2009. He has been a visiting scholar at Pennsylvania State University in Middletown, USA. His study focuses on the corrosive and mechanical properties of civil materials.

Prof. Dr. Y. Frank Chen, born in 1956, is currently Tenured Professor at Pennsylvania State University, Middletown, USA, and Distinguished Professor at Southwest University, Chongqing University, and East China Jiaotong University, all in China. He obtained his PhD degree from the University of Minnesota, Minneapolis, USA in 1988. He specializes in dynamic soil-structure interaction, computational methods, bridge engineering, foundations, dynamic-load resistant designs, geo-environmental engineering, and construction materials.


References

1 P.Han, Y. B.Yan, R. Z.Xie, B.He, P. J.Han: Influence of pH of silt on the early electrochemical corrosion behavior of X70 steel, Corros Prot38 (2017), pp. 34034510.11973/fsyfh-201705004Suche in Google Scholar

2 B.He, P. J.Han, X. H.Bai: Moisture content and resistivity influence on corrosion rate of soil polluted by NaCl, Sci Technol Eng14 (2014), pp. 16711815 (in chinese)Suche in Google Scholar

3 B.He, P. J.Han, L. F.Hou, D. C.Zhang, X. H.Bai: Understanding the effect of soil particle size on corrosion behavior of natural gas pipeline via modelling and corrosion micromorphology, Eng Fail Anal80 (2017), pp. 32534010.1016/j.engfailanal.2017.06.043Suche in Google Scholar

4 B.He, P. J.Han, C. H.Lu, X. H.Bai: Effect of soil particle size on the corrosion behavior of natural gas pipeline, Eng Fail Anal58 (2015), pp. 193010.1016/j.engfailanal.2015.08.027Suche in Google Scholar

5 C.Ren, P. J.Han, W. B.Zhang: Electrochemical behavior of X70 steel corrosion in sand with direct current, Corros Prot36 (2015), pp. 1137114210.11973/fsyfh-201512005Suche in Google Scholar

6 M. L.Shi: Impedance Spectroscopy of Concrete, China Railway Publishing House, Beijing, P. R. China (2003)Suche in Google Scholar

7 M. L.Shi, Z. H.Yang: Topological structure of the spectroscopy of AC impedance for concrete, J Build Mater5 (2002), pp. 132136Suche in Google Scholar

8 Y. H.Wu, S. X.Luo, X. Q.Zhang, C.Sun: Effect of Cl- content on corrosion behaviors of carbon steel in yellow soil, Corros Res25 (2011), pp. 414510.13726/j.cnki.11-2706/tq.2011.05.012Suche in Google Scholar

9 Y. H.Wu, S. X.Luo, H.Gou, C.Sun: Influence of components of simulated acid rain on corrosion behaviors of 1Cr18Ni9Ti stainless steel in soil, Corros Prot33 (2012), pp. 378451 (In Chinese)Suche in Google Scholar

10 Y. H.Wu, T. M.Liu, C.Sun, J.Xu, C. K.Yu: Corrosion behaviors of copper in acidic soil acidified with simulated acid rain, J Sichuan Univ (Eng Sci Ed)42 (2010), pp. 11912510.15961/j.jsuese.2010.01.009Suche in Google Scholar

11 Y. H.Wu, S. X.Luo, H.Gou: Effects of simulated acid rain on the corrosion behavior of aluminum in soil, Mater RevB 26 (2012), pp. 6164 (In Chinese)Suche in Google Scholar

12 Y. H.Wu, S. X.Luo, H.Gou: Study on the corrosion behaviors of zinc in yellow soil leached with simulated acid rain, Surf Technol41 (2012), pp. 121510.16490/j.cnki.issn.1001-3660.2012.02.015Suche in Google Scholar

13 Y. H.Wu, S. X.Luo, H.Gou, C.Sun: Effects of microbe on corrosion behavior of Q235 steel in yellow soils, Surf Technol40 (2011), pp. 334010.16490/j.cnki.issn.1001-3660.2011.02.028Suche in Google Scholar

14 Y. H.Wu, C.Sun, H.Gou: Effects of SRB on macrocell corrosion of X70 steel in soils, Corros Sci Prot Technol19 (2007), pp. 98102 (In Chinese)Suche in Google Scholar

15 C. M.Xu, Y.Li, Y. H.Zhang: Study on electrochemical corrosion behavior of X80 pipeline steel in Luoyang soil with saturated water, Mater Heat Treat40 (2011), pp. 131610.14158/j.cnki.1001-3814.2011.10.038Suche in Google Scholar

16 C. M.Xu: Influence of northern Shaanxi saline soil saturated with water on electrochemical corrosion behavior of X80 pipeline steel, CIESCJ 62 (2011), pp. 773778 (In Chinese)Suche in Google Scholar

17 C. M.Xu: Study on short-term corrosion behavior of X80 pipeline steel in Huo’ erguosi soil with saturated water, Mater Eng3 (2011), pp. 7881 (In Chinese)Suche in Google Scholar

18 C. M.Xu: Corrosion electrochemical characteristics of X80 pipeline steel in Southwest area soil, J Iron Steel Res23 (2011), pp. 256210.13228/j.boyuan.issn1001-0963.2011.09.004Suche in Google Scholar

19 D. T.Qi, C. M.Xu, N.Ding, M. L.Yan: Corrosion behavior of X80 pipeline steel in alkaline sand soil with saturated water, Mater Mech Eng35 (2011), pp. 5861 (In Chinese)Suche in Google Scholar

20 B.Li, Y. H.Zhang, C. M.Xu: Electrochemcial corrosion behavior of X80 pipeline steel in Yan'an soil with saturated water, Mater Mech Eng34 (2010), pp. 6586 (In Chinese)Suche in Google Scholar

21 P. J.Han, R. Z.Xie, N. M.Lin, B.He: Electrochemical corrosion behavior of X70 steel in sand soil contaminated by copper(II), Int J Electrochem Sci11 (2016), pp. 9491950710.20964/2016.11.07Suche in Google Scholar

22 P. J.Han, R. Z.Xie, R.Liu, B.He, X. H.Bai, P.Han: Electrochemical corrosion behaviour of X70 steel in Zinc (II)- contaminated sand soil, Int J Electrochem Sci12 (2017), pp. 7668769210.20964/2017.08.44Suche in Google Scholar

23 Y. F.Zhang, P. J.Han, B.He: Experimental study on electrochemical impedance characteristics of sand, J Taiyuan Univ Technol48 (2017), pp. 556110.16355/j.cnki.issn1007-9432tyut.2017.01.009Suche in Google Scholar

24 Y. B.Yan, P.Han, R. Z.Xie, P. J.Han, B.He: Experimental study for the effect of pH value on the electrochemical properties of silty soil, Sci Technol Eng17 (2017), pp. 297302 (In Chinese)Suche in Google Scholar

25 X. Y.Wang, P. J.Han, Q.Zhang: Experimental study on the electrochemical characteristics of Kaolin polluted by cadmium nitrate, Sci Technol Eng16 (2016), pp. 255260 (In Chinese)10.1109/TST.2016.7488737Suche in Google Scholar

26 S.Wang, P. J.Han, B. Z.Shen, C.Ren: The study of the relation of electrochemical impedance spectroscopy (EIS) and mechanical properties for lime-soil, Sci Technol Eng15 (2015), pp. 7884 (In Chinese)Suche in Google Scholar

27 S.Wang, P. J.Han: Electrochemical impedance characteristics of silty clay, Chin Sciencepaper10 (2015), pp. 21692173 (In Chinese) 10.3969/j.issn.2095-2783.2015.18.015Suche in Google Scholar

28 Y. L.Cui, H. Z.He, M. L.Shi, H. T.Yin: Hyperbolic tangent characteristics of impedance spectroscopy of foam concrete, J Build Mater20 (2017), pp. 444448Suche in Google Scholar

29 M. L.Shi, Z. Y.Chen: Low frequency characteristics of impedance spectroscopy of concrete, J Chin Ceram Soc24 (1996), pp. 703706Suche in Google Scholar

30 M. E.Orazem, B.Tribollet, X. Y.Yong, X. Y.Zhang: Electrochemical Impedance Spectroscopy, Chemical Industry Press, Beijing, P. R. China (2014)Suche in Google Scholar

31 C. N.Cao, J. Q.Zhang: An Introduction to Electrochemical Impedance Spectroscopy, Science Press, Beijing, P. R. China (2002) (In Chinese)Suche in Google Scholar

32 N. M.Lin, Q.Liu, J. J.Zou, D. L.Li, S.Yuan, Z. H.Wang: Surface damage mitigation of Ti6Al4 V alloy via thermal oxidation for oil and gas exploitation application: characterization of the microstructure and evaluation of the surface performance, RSC Adv7 (2017), pp. 135171353510.1039/c6ra28421cSuche in Google Scholar

33 M. L.Shi: Analytical expressions of impedance functions of concrete, J Build Mater2 (1999), pp. 1822Suche in Google Scholar

34 P. J.Han, Y. F.Zhang, F. Y.Chen, X. H.Bai: Interpretation of electrochemical impedance spectroscopy (EIS) circuit model for soils, J Cent South Univ22 (2015), pp. 4318432810.1007/s11771-015-2980-1Suche in Google Scholar

35 E.Barsoukov, J. R.Macdonald: Impedance Spectroscopy Theory, Experiment and Applications, John Wiley & Sons, Hoboken, New Jersey, USA (2005)10.1002/0471716243Suche in Google Scholar

36 J. Q.Zhang, C. N.Cao: The application of Kramers-Kronig transforms in impedance data analysis, J Chin Soc Corros Prot11 (1991), pp. 111118 (In Chinese)Suche in Google Scholar

37 F. G.Liu, Y. H.Zhang, G. J.Ma, C. S.Lu: The validity and application of Kramers-Kronig transform for electrochemical impedance, China Surf Eng22 (2009), pp. 263010.3969/j.issn.1007-9289.2009.05.006Suche in Google Scholar

38 Y. L.Zhang, D. T.Sun, G. L.Guo, L. L.Gui: Transfer rule of equivalent circuits of similar plots on the impedance complex plane and on the capacitance complex plane for an AC impedance measurement(II), Chem J Chin Univ21 (2000), pp. 10861092 (In Chinese)Suche in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111222/html
Button zum nach oben scrollen