Startseite Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties

  • Abdenour Chenni , Hocine Djidjelli , Amar Boukerrou , Juan Jorge Martinez Vega , Yves Grohens und Benjamin Saulnier
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, blends were developed based on poly (lactic acid) (PLA) containing chitosan (CHS) extracted in our laboratory and an organically modified montmorillonite (cloisite 30B) at different amounts from 1 to 4 (in wt.-%). Tensile samples were prepared using twin-screw extrusion followed by injection molding, and films were obtained by press compression. The morphological and mechanical results showed a phase segregation and poor adhesion between the polymers. Indeed, the elongation at break and thermal stability had undergone a major decrease when adding chitosan to the PLA matrix. Glass transition temperature (Tg), melt temperature (Tm) and recrystallization temperature (Tc) decreased with the addition of chitosan, whereby an increase in crystallinity indicated a nucleation effect showing the same results as with the addition of cloisite 30B. An interesting effect of cloisite 30B was found when it was incorporated into the PLA/CHS blend especially with respect to a 4 wt.-% of cloisite 30B amount. The loss of elongation at the break was partially compensated and the thermal stability and crystallinity were improved. The water vapor permeability (WVP) and water vapor transmission rate (WVTR) of PLA/chitosan blends were higher than those for the neat PLA. By incorporating the C30B into the PLA/CHS blends, very interesting and good barrier properties were recorded as compared to neat PLA and PLA/CHS composites.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden Mischungen entwickelt, die auf Poly-Laktosesäure (Poly (Lactic Acid) – (PLA)) basieren und Chitosan (CHS) enthalten und gegenüber dem Original modifiziertes Montmorillonit (Cloisite 30B) mit verschiedenen Mengen von 1 bis 4 wt.-% enthalten. Es wurden daraus mittels Doppelschneckenextrusion und nachfolgendem Spritzgießens Zugproben hergestellt und die Schichten wurden durch Kompression in einer Presse hergestellt. Die morphologischen und mechanischen Ergebnisse zeigen eine Phasensegragation und eine schlechte Verbindung zwischen den Polymeren. Tatsächlich zeigten die Bruchdehnung und die thermische Stabilität einen erheblichen Abfall, wenn Chitosan zur PLA Matrix hinzugegeben wird. Die Glasübergangstemperatur Tg, die Schmelztemperatur Tm und die Rekristallisationstemperatur Tc nahmen mit der Zugabe von Chitosan ab, einhergehend mit einer Zunahme der Kristallinität, was einen Keimbildungseffekt andeutet. Die gleichen Ergebnisse zeigten sich bei einer Zugabe von Cloisit B. Es ergab sich eine interessante Wirkung von Cloisite 30B, als es in die PLA/CHS-Mischung eingebaut wurde. Insbesondere bei einer Menge von 4 wt.-% Cloisit 30 B wurde der Verlust der Bruchdehnung teilweise kompensiert und die thermische Stabilität und Kristallinität wurden verbessert. Die Wasserdampfpermeabilität (Water Vapor Permeability (WVP)) und die Wasserdampfdurchgangsrate (Water Vapor Transmission Rate (WVTR)) der PLA/Chitosan-Mischungen waren höher als die reine PLA. Durch Einbau des C30B in die PLA/CHS-Mischungen ergaben sich sehr interessante und gute Barriereeigenschaften im Vergleich zu dem reinen PLA und den PLA/CHS-Kompositen.


*Correspondence Address, Abdenour Chenni, Laboratory of Advanced Polymeric Materials (LMPA), Faculty of Technology, University Abderrahmane Mira, Rue targa Ouzemour, Bejaia 06000, Algéria, E-mail:

Abdenour Chenni, born in 1989, holds a Master's Degree in Polymer Engineering Materials. Since December 2013, he has been a doctoral student in the field of polymer and composite materials field at the Laboratory of Advanced Polymer Materials (LMPA) University of Bejaia, Algeria.

Prof. Dr. Hocine Djidjelli, is a university professor. He was project manager in several research projects for Laboratory of organic materials (LMO) and Laboratory of Advanced Polymeric Materials (LMPA) at the university of Bejaia, Algerien. He was Head of the Chemical Engineering Department and Vice-rector responsible of external relations at the University of Bejaia. Currently, he is a professor at the University of Bejaia, Algeria.

Prof. Dr. Amar Boukerrou, born 1958, is a university professor, and project manager in several research projects. He was a Vice Dean of Studies and Student Matters, at the Faculty of Technology. Currently he is the Dean of the Faculty of Technology at the University of Bejaia, Algeria.

Prof. Dr. Juan Jorge Martinez Vega, born 1958, received a Doctor's degree in Material Science at Ecole Nationale Supérieure de Mécanique et d’Aérotechnique, Poitiers France in 1986, followed by Habilitation to lead research, at Paul Sabatier University, Toulouse, France, in 1992. He became Vice-Rector responsible for international relations at Paul Sabatier University in 2005. He has published several works in international and national congresses. Currently he is a professor at the Paul Sabatier University, Toulouse III, Toulouse, France.

Prof. Dr. Yves Grohens, born 1965, is a university professor in France. He was the Director of the Polymer Laboratory, Interface and Composite properties (L2PIC) Lorient, France, Director of the Engineering Laboratory of Bretagne (LIMATB). Currently he is Assistant Director of the Institute of Research Dupuy de Lôme (IRDL), Lorient, France.

Dr. Benjamin Saulnier holds a doctoral degree from the University of Bretagne-Sud, France. He was a Teacher-Researcher at the university of Montpellier, France, a researcher at CNRS, a developer researcher at Olmix, INRA, France, and worked in projects redaction and transfer technologies at several agencies in France. Currently he is a researcher at the Institute of Research Dupuy de Lôme (IRDL), University of Bretagne-sud, France.


References

1 G.Gorrasi, L.Tammaro, V.Vittoria, M. A.Paul, M.Alexandre, P.Dubois: Transport properties of water vapor in polylactide/montmorillonite nanocomposites, Journal of Macromolecular Science, Part B Physics43 (2004), No. 3, pp. 56557510.1081/MB-120030006Suche in Google Scholar

2 M. S.Beauvalet, F. F.Mota, R. M. D.Soares, R. V. B.Oliveira: Influence of glycerol on morphology and properties of polylactide/montmorillonite nanocomposites, Polymer Bulletin70 (2013), No. 6, pp. 1863187310.1007/s00289-012-0884-xSuche in Google Scholar

3 J. C.Middleton, A.Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials21 (2000), No. 23, pp. 2335234610.1016/S0142-9612(00)00101-0Suche in Google Scholar PubMed

4 J.Bonilla, E.Fortunati, M.Vargas, A.Chiralt, J. M.Kenny: Effects of chitosan on the physicochemical and antimicrobial properties of PLA films, Journal of Food Engineering119 (2013), No. 2, pp. 23624310.1016/j.jfoodeng.2013.05.026Suche in Google Scholar

5 R.Grande, A. J. F.Carvalho: Compatible ternary blends of chitosan/poly(vinyl alcohol)/poly(lactic acid) produced by oil-in-water emulsion processing, Biomacromolecules12 (2011), No. 4, pp. 90791410.1021/bm101227qSuche in Google Scholar PubMed

6 M.Jamshidian, E. A.Tehrany, M.Imran, M.Jacquot, S.Desobry: Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies, Comprehensive Reviews in Food Science and Food Safety9 (2010), No.5, pp. 55257110.1111/j.1541-4337.2010.00126.xSuche in Google Scholar PubMed

7 V.Taubner, R.Shishoo: Influence of processing parameters on the degradation of poly(L-lactide) during extrusion. Journal Applied Polymer Science79 (2001), No. 12, pp. 2128213510.1002/1097-4628(20010321)79:12<2128::AID-APP1020>3.0.CO;2-#Suche in Google Scholar

8 C. H.Chen, F. Y.Wang, C. F.Mao, W. T.Liao, C. D.Hsieh: Studies of chitosan: II. Preparation and characterization of chitosan/poly(vinyl alcohol)/gelatin ternary blend films, International Journal of Biological Macromolecules43 (2008), No. 1, pp. 374210.1016/j.ijbiomac.2007.09.005Suche in Google Scholar

9 N. E.Tsverova, A. E.Mochalova, A. G.Morozov, P. A.Yuninc, L. A.Smirnova, I. D.Grishin: Synthesis and Properties of Chitosan/Polylactide Compositions Produced with the Use of Compatibilizers. Polymer Science SeriesB 57 (2015), No. 3, pp. 23924310.1134/S1560090415030082Suche in Google Scholar

10 V. M.Correlo, L. F.Boesel, M.Bhattacharya, J. F.Mano, N. M.Neves, R. L.Reis: Properties of melt processed chitosan and aliphatic polyester blends, Materials Science and Engineering:A 403(2005a), No. 1–2, pp. 576810.1016/j.msea.2005.04.055Suche in Google Scholar

11 V. M.Correlo, L. F.Boesel, M.Bhattacharya, J. F.Mano, N. M.Neves, R. L.Reis: Hydroxyapatite reinforced chitosan and polyester blends for biomedical applications. Macromolecular Materials and Engineering290 B (2005), No. 12, pp. 1157116510.1002/mame.200500163Suche in Google Scholar

12 S.Joseph, S.Thomas: Modelling of tensile moduli in polystyrene/polybutadiene blends, Journal of Polymer Science B: Polymer Physics40 (2002), No. 8, pp. 75576410.1002/polb.10139Suche in Google Scholar

13 N. E.Suyatma, A.Copinet, L.Tighzert, V.Coma: Mechanical and Barrier Properties of Biodegradable Films Made from Chitosan and Poly (Lactic Acid) Blends, Journal of Polymers and the Environment12 (2004), No. 1, pp. 1566254310.1023/B:JOOE.0000003121.12800.4eSuche in Google Scholar

14 C.Chen, L.Dong, M. K.Cheung: Preparation and characterization of biodegradable poly(L-lactide)/chitosan blends, European Polymer Journal41 (2005), No. 5, pp. 95896610.1016/j.eurpolymj.2004.12.002Suche in Google Scholar

15 K.Fukushima, D.Tabuani, G.Camino: Nanonanocomposites of PLA and PCL based on montmorillonite and sepiolite, Materials Science & EngineeringC 29 (2009), No. 4, pp. 1433144410.1016/j.msec.2008.11.005Suche in Google Scholar

16 M.Zenkiewicz, J.Richert, P.Rytlewski, K.Moraczewski: Some effects of corona plasma treatment of polylactide/montmorillonite nanonanocomposite films, Plasma Processes and Polymers6 (2009), pp. 38739110.1002/ppap.200930901Suche in Google Scholar

17 A.Riga, J.Zhang, J.Collis: Characterization of drawn and undrawn polyllactide films by differential scanning calorimetry, Journal of Thermal Analysis and Calorimetry75 (2004), No. 1, pp. 25726810.1023/B:JTAN.0000017347.08469.b1Suche in Google Scholar

18 E.Javadi, A.Babaei, M.Nouri: Correlation of the Morphological and Mechanical Properties of a Biodegradable Blend Based on Polylactic Acid, Journal of Macromolecular Science, Part B Physics56 (2017), No. 3, pp. 19420110.1080/00222348.2017.1280742Suche in Google Scholar

19 C. M.Boutry, R.Kiran, F.Umbrecht, C.Hierold: Processing and quantitative analysis of biodegradable polymers (PLLA and PCL) thermal bonding, Journal of Micromechanics and Microengineering20 (2010), No. 8, pp. 0850068501910.1088/0960-1317/20/8/085006Suche in Google Scholar

20 M.Lavorgna, F.Piscitelli, P.Mangiacapra, G. G.Buonocore: Study of the combined effect of both clay and glycerol plasticizer on the properties of chitosan films, Carbohydrate Polymers82 (2010), No. 2, pp. 291298, 10.1016/j.carbpol.2010.04.054Suche in Google Scholar

21 S. F.Wang, L.Shen, Y. J.Tong, L.Chen, I. Y.Phang, P. Q.Lim, T. X.Liu: Biopolymer chitosan/montmorillonite nanocomposites: Preparation and characterization, Polymer Degradation and Stability90 (2005), No. 1, pp. 12313110.1016/j.polymdegradstab.2005.03.001Suche in Google Scholar

22 J. W.Gilman: Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites, Applied Clay Science15 (1999), No.1–2, pp. 314910.1016/S0169-1317(99)00019-8Suche in Google Scholar

23 R. A.Vaia, G.Price, P. N.Ruth, H. T.Nguyen, J.Lichtenhan: Polymer/layered silicate nanocomposites as high performance ablative materials, Applied Clay Science15 (1999), No. 1–2, pp. 679210.1016/S0169-1317(99)00013-7Suche in Google Scholar

24 K.Lewandowska, A.Sionkowska, B.Kaczmarek, G.Furtos: Characterization of chitosan composites with various clays, International Journal of Biological Macromolecules65 (2014), pp. 53454110.1016/j.ijbiomac.2014.01.069Suche in Google Scholar PubMed

25 H.Gartner, Y.Li, E.Almenar: Improved wettability and adhesion of polylactic acid/chitosan coating for bio-based multilayer film development, Applied Surface Science332 (2015), pp. 48849310.1016/j.apsusc.2015.01.157Suche in Google Scholar

26 K.Halász, Y.Hosakun, L.Csóka: Reducing water vapor permeability of poly(lactic acid) film and bottle through layer-by-layer deposition of green-processed cellulose nanocrystals and chitosan, International Journal of Polymer Science2015 (2015), pp. 1610.1155/2015/954290Suche in Google Scholar

27 J. W.Rhim, S. I.Hong, C. S.Ha: Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films, LWT Food Science and Technology42 (2009), No. 2, pp. 61261710.1016/j.lwt.2008.02.015Suche in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111219/html
Button zum nach oben scrollen