Startseite Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermo-mechanical testing of TiO2 functional coatings using friction stir processing

  • Maximilian Stummer , Christopher Weiß und Norbert Enzinger
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

TiO2 micro powder was deposited onto an aluminum substrate by atmospheric plasma spraying resulting in 200 μm thick coatings. These coatings were characterized, whereby typical layer properties like porosity, layer thickness and hardness were investigated. Subsequently, a thermo-mechanical load was applied to the TiO2 coating by friction stir processing. This testing procedure indicates several advantages. First, specific load cycles can be applied at high accuracy using specific parameter sets. Secondly, different tool geometries can be used for testing, resulting in countless possible load cases and testing scenarios. As a result, the thermal properties of the TiO2 coating were investigated and compared as a function of a stepwise increased testing load. To complete the experimental results, a numerical simulation of the testing process was set up to estimate the transient heat flow of the TiO2 coating during friction stir processing.

Kurzfassung

Für die diesem Beitrag zugrunde liegende Studie wurde Mikropulver aus TiO2 auf ein Aluminiumsubstrat mittels atmosphärischen Plasmaspritzens aufgebracht, was 200 μm dicke Schichten ergab. Die so hergestellten Schichten wurden charakterisiert und typische Schichteigenschaften wie Porosität, Schichtdicke und Härte untersucht. Nachfolgend wurde eine parameterabhängige Last mittels Friction Stir Processing (FSP) auf die TiO2 Beschichtung aufgebracht, um die thermo-physikalischen Eigenschaften zu bestimmen. Dabei handelt es sich um keinen Standardprozess, jedoch bringt der Prozess verschiedene Vorteile. Unter anderem können spezifische Lastzyklen mit hoher Genauigkeit durch angepasste Parametervariation aufgebracht werden. Zweitens können unterschiedliche Werkzeug Geometrien für die Untersuchung verwendet werden. Dies ergibt eine Vielzahl von Belastungstypen und Prüfungsszenarien. Als Ergebnis wurden die thermischen Eigenschaften der TiO2 unter schrittweiser Erhöhung der Last untersucht und verglichen. Um die Experimente zu vervollständigen, wurde eine numerische Simulation des FSP erstellt, um den Wärmefluss während der Schichtuntersuchung abschätzen zu können.


*Correspondence Address, Assoc. Prof. Dr. Norbert Enzinger, Maximilian Stummer, Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24, 8010 Graz, Austria, E-mail: ,

Dipl.-Ing. Maximilian Stummer, IWE, studied Advanced Materials Science at the Graz University of Technology, Austria. Since September 2014 he has been working as a project member (K-Project metal JOINing) and researcher in the field of modern coating and joining technology in cooperation with Inocon Technolgie, Attnang-Puchheim, Austria. During this period he has also been working on his PhD thesis at the Graz University of Technology.

Christopher Weiß, BSc, studied Mechanical Engineering at the Graz University of Technology, Austria. He wrote this master's thesis at the Institute of Materials Science, Joining and Forming in 2017/18 in cooperation with Stirtec GmbH Premstätten, Austria. His topic was friction stir processing of TiO2 particles as precipitation hardeners for aluminium alloys.

Associate Prof. Dr. Norbert Enzinger studied mechanical engineering at the Graz University of Technology, Austria. After receiving his PhD in the field of numerical simulation of welding residual stresses, he habilitated in welding and failure case analysis. Currently he is the head of the joining technology group at the Institute of Materials Science, Joining and Forming at Graz University of Technology and operative manager of K-Project metal JOINing.


References

1 E.Ghassemieh: Materials in Automotive Application, State of the Art and Prospects, New Trends and Developments in Automotive Industry, 1st Ed., InTech, Rijeka, Croatia (2011), pp. 36539410.5772/13286Suche in Google Scholar

2 W.Miller, L.Zhuang, J.Bottema, A.Wittebrood, P. DeSmet, A.Haszler, A.Vieregge: Recent development in aluminium alloys for the automotive industry, Materials Science and Engineering280 (2000), pp. 374910.1016/S0921-5093(99)00653-XSuche in Google Scholar

3 S.Ahmaniemi, M.Vippola, P.Vuoristo, T.Mäntylä, F.Cernuschi, L.Lutterotti: Modified thick thermal barrier coatings: Microstructural characterization, Journal of the European Ceramic Society24 (2004), No. 8, pp. 2247225810.1016/S0955-2219(03)00639-3Suche in Google Scholar

4 W.Ma, H.Dong, H.Guo, S.Gong, X.Zheng: Thermal cycling behavior of La2Ce2O7/8YSZ double-ceramic-layer thermal barrier coatings prepared by atmospheric plasma spraying, Surface and Coatings Technology204 (2010), No. 21–22, pp. 3366337010.1016/j.surfcoat.2010.03.053Suche in Google Scholar

5 Plasma spraying of micro-composite thermal barrier coatings, Vacuum65 (2002), No. 3–4, pp. 41542510.1016/S0042-207X(01)00451-1Suche in Google Scholar

6 R. S.Mishra, Z. Y.Ma: Friction stir welding and processing, Materials Science and EngineeringR 50 (2005), No. 1–2, pp. 17810.1016/j.mser.2005.07.001Suche in Google Scholar

7 T.Dursun, C.Soutis: Recent developments in advanced aircraft aluminium alloys, Materials and Design56 (2014), pp. 86287110.1016/j.matdes.2013.12.002Suche in Google Scholar

8 Z.Cvijović, M.Vratnica, K.Gerić: Fractographic analysis of fatigue damage in 7000 aluminium alloys, Journal of Microscopy232 (2008), No. 3, pp. 58959410.1111/j.1365-2818.2008.02122.xSuche in Google Scholar PubMed

9 Kastens & Knauer GmbH, Abnahmeprüfzeugnis – Al EN AW 7075 T651 (2017)Suche in Google Scholar

10 A.Ibrahim, R. S.Lima, C. C.Berndt, B. R.Marple: Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings, Surface and Coatings Technology201 (2007), No. 16–17, pp. 7589759610.1016/j.surfcoat.2007.02.025Suche in Google Scholar

11 P.Ritt, O.Lu-Steffes, R.Sakidja, J. H.Perepezko, W.Lenling, D.Crawmer, J.Beske: Application of plasma spraying as a precursor in the synthesis of oxidation-resistant coatings, Journal of Thermal Spray Technology22 (2013), pp. 992100110.1007/s11666-013-9947-2Suche in Google Scholar

12 F. L.Toma, C. C.Stahr, L. M.Berger, S.Saaro, M.Herrmann, D.Deska, and G.Michael, Corrosion resistance of APS- and HVOF-sprayed coatings in the Al2O3-TiO2 system, Journal of Thermal Spray Technology19 (2010), No. 1–2, pp. 13714710.1007/s11666-009-9422-2Suche in Google Scholar

13 X. Q.Cao, R.Vassen, D.Stoeve: Ceramic materials for thermal barrier coatings, Journal of the European Ceramic Society24 (2004), No. 1, pp. 11010.1016/S0955-2219(03)00129-8Suche in Google Scholar

14 Eckart Effect Pigments GmbH, Datenblatt – Properties of TiO2 Micro Powder (2017)Suche in Google Scholar

15 P.Fauchais: Understanding plasma spraying, Journal of Physics D: Applied Physics37 (2004), No. 9, pp. 8610810.1088/0022-3727/37/9/R02Suche in Google Scholar

16 A.Rabl, M.Stummer, M.Pfund, A. I.Pongau, N.Enzinger: Surface treatment for effective bonding in the sports industry, Materials Testing60 (2018), No. 2, pp. 12813310.3139/120.111132Suche in Google Scholar

17 M.Stummer, T.Eichinger, P.Stögmüller, N.Enzinger: Improving the wetting behaviour of steel substrates by use of Atmospheric Pressure Plasma, International Journal of Mechanical Engineering and Automatization3 (2016), No. 12, pp. 482490Suche in Google Scholar

18 Z. Y.Ma: Friction stir processing technology: A review, Metallurgical and Materials TransactionsA 39 (2008), No. 3, pp. 64265810.1007/s11661-007-9459-0Suche in Google Scholar

19 Sika GmbH – Emissionsfaktoren (2018), https://www.sika.net/images/Dokumente/Emissionsfaktoren_Tabelle.pdf, Accessed: 23-Apr-2018.Suche in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111218/html
Button zum nach oben scrollen