Startseite Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing

  • Rui Shu , Xiaosong Jiang , Jiaxin Jiang und Degui Zhu
Veröffentlicht/Copyright: 15. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cu-based powder metallurgy friction material is technically one of the most important powder metallurgy friction materials due to its high conductivity, high strength, good thermal properties and wear endurance. In this paper, nano-carbon reinforced Cu-based powder metallurgy friction materials were prepared by hot isostatic pressing (HIP). Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials with different nano-carbon content were systematically investigated. The microstructures of the nanocomposites were examined by optical microscopy (OM), X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). Mechanical properties were determined from micro-hardness, shear strength and compressive strength. The fracture and strengthening mechanisms of nano-carbon reinforced Cu-based powder metallurgy friction materials are explored on the basis of the microstructure and composition of the nanocomposites along with the formation and function of the interface. The nano-carbon mainly enhances the nanocomposites by load transfer and obstruction of dislocation. The synergistic effect of multi-walled carbon nanotubes (MWCNTs)and graphene improves the dispersion but hinders the densification process. The interfaces between carbon and copper are the main source of cracks, and the nanocomposites are mainly composed of brittle fracture.

Kurzfassung

Cu-basiertes pulvermetallurgische Reibmaterial stellt technisch eines der wichtigsten pulvermetallurgischen Reibmaterialien dar, und zwar aufgrund der hohen Leitfähigkeit, der hohen Festigkeit, guten thermischen Eigenschaften und Verschleißfestigkeit. In der diesem Beitrag zugrunde liegenden Studie wurden Nano-Karbon-verstärkte Cu-basierte pulvermetallurgische Reibmaterialien mittels des isostatischen Heißpressens hergestellt (Hot Isostatic Pressing (HIP)). Die Mikrostruktur und die mechanischen Eigenschaften der Nano-Karbon-verstärkten Cu-basierten pulvermetallurgischen Reibmaterialien mit verschiedenen Nano-Karbon-Anteilen wurden systematisch untersucht. Die Mikrostrukturen der Nanokomposite wurden mittels Lichtmikroskopie, Röntgendiffraktometrie, Elektronenrückstreu-Imaging und mittels Rasterelektronenmikroskopie, ausgerüstet mit energiedispersiver Spektroskopie untersucht. Die mechanischen Eigenschaften wurden anhand der Mikrohärte, der Scherfestigkeit und der Druckfestigkeit bestimmt. Die Bruch- und Verfestigungsmechanismen der Nano-Karbon-verstärkten Cu-basierten pulvermetallurgischen Reibmaterialien wurden auf Basis der Mikrostruktur und Zusammensetzung der Nanokomposite sowie Bildung und Funktion der Grenzfläche ermittelt. Das Nano-Karbon verbessert die Nanokomposite hauptsächlich bezüglich des Belastungstransfers und der Behinderung von Versetzungen. Der synergistische Effekt von MWCNTs und Graphen verbessert die Dispersion, verhindert aber den Verdichtungsprozess. Die Grenzflächen zwischen Karbon und Kupfer stellen die Hauptquelle für Risse dar, und die Nanokomosite weisen hauptsächlich spröde Brüche auf.


*Correspondence Address, Assoc. Prof. Dr. Xiaosong Jiang, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, P. R. China, E-mail:

Rui Shu, born in 1994, graduated in Materials Science and Engineering at Southwest Jiaotong University, Chengdu, China in 2017. He is a Master of Science student in Materials Science and Engineering at Southwest Jiaotong University and doing research on powder metallurgy.

Dr. Xiaosong Jiang, born in 1979, graduated with a Bachelor's degree in Powder Metallurgy from Central South University, Changsha, China in 2002. He completed his Master of Science in Materials Physics and Chemistry at Southwest Jiaotong University, Chengdu, China in 2007. Then, in 2011, he completed his PhD degree at Tongji University, Shanghai, China. He is an associate professor at Southwest Jiaotong University, Chengdu, China. His main research fields are powder metallurgy, welding, and fretting fatigue.

Jiaxin Jiang, born in 1987, graduated with a Bachelor's and Master's degree in Mechanical Engineering at Shanghai University, Shanghai, China in 2008 and 2011. She is an assistant professor at Chengdu Textile College, Chengdu, China. Her main research fields are fatigue and wear resistance.

Dr. Degui Zhu, born in 1965, graduated with a Bachelor's, Master's and PhD Degree in Materials Science and Engineering at Southwest Jiaotong University, Chengdu, China in 1986,1989 and 2013, respectively. He is an associate professor at Southwest Jiaotong University, Chengdu, China. His main research fields are powder metallurgy, welding, ceramics, and fatigue.


References

1 D.Janas, B.Liszka: Copper matrix nanocomposites based on carbon nanotubes orgraphene, Materials Chemistry Frontiers2 (2018), pp. 223510.1039/c7qm00316aSuche in Google Scholar

2 Y.Şahin, K. E.Öksüz: Tribological behavior of Al2O3 and B4C particle-reinforced copper matrix investigated by the Taguchi method, Materials Testing58 (2016), No. 5, pp. 45346110.3139/120.110868Suche in Google Scholar

3 G.Ömer: Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process, Materials Testing56 (2014), No. 9, pp. 66266610.3139/120.110615Suche in Google Scholar

4 M.Shabani, M. H.Paydar, R.Zamiri, M.Goodarzi, M. M.Moshksar: Microstructural and sliding wear behavior of SiC-particle reinforced copper matrix composites fabricated by sintering and sinter-forging processes, Journal of Materials Research & Technology5 (2016), No. 1, pp. 51210.1016/j.jmrt.2015.03.002Suche in Google Scholar

5 G. A.Bagheri: The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles, Journal of Alloys & Compounds676 (2016), pp. 12012610.1016/j.jallcom.2016.03.085Suche in Google Scholar

6 X.Han, F.Gao, L.Su, F.Rong, E.Zhang: Effect of graphite content on the tribological performance of copper-matrix composites under different friction speeds, Journal of Tribology139 (2017), No. 4, pp. 04160104160410.1115/1.4035014Suche in Google Scholar

7 Q.Liu, X. B.He, S. B.Ren, T. T.Liu, Q. P.Kang, X. H.Qu: Fabrication and thermal conductivity of copper matrix composites reinforced with Mo 2 C or TiC coated graphite fibers, Materials Research Bulletin48 (2013), No. 11, pp. 4811481710.1016/j.materresbull.2013.07.064Suche in Google Scholar

8 T. F.Wu, Z. W.Qiu, S. L.Lee, Z. G.Lee, J. C.Lin: Effects of graphite on wear and corrosion behaviour of SiC-reinforced copper matrix composites formed by hot pressing, Corrosion Engineering Science & Technology39 (2013), No. 3, pp. 22923510.1179/147842204X2826Suche in Google Scholar

9 S.Iijima: Helical microtubules of graphitic carbon, Nature354 (1991), No. 6348, pp. 565810.1038/354056a0Suche in Google Scholar

10 K. S.Novoselov, A. K.Geim, S. V.Morozov, D.Jiang, Y.Zhang, S. V.Dubonos, I. V.Grigorieva, A. A.Firsov: Electric field effect inatomically thin carbon films, Science306 (2004), No. 5696, pp. 66666910.1126/science.1102896Suche in Google Scholar PubMed

11 W.Liu, X.Jiang, Z.Shao, D.Zhu, M.Zhu, S. S.Johnson, Z.Luo: Nanocarbon-reinforced Cu-matrix nanocomposites with high mechanical strengths, Current Nanoscience13 (2017), No. 4, pp. 41042010.2174/1573413713666170613115951Suche in Google Scholar

12 L.Zhang, Z.Duan, H.Zhu, K.Yin: Advances in synthesizing copper/graphene composite material, Materials & Manufacturing Processes32 (2016), No. 5, pp. 47547910.1080/10426914.2016.1198036Suche in Google Scholar

13 W.Li, X.Jiang, J.Gao, Y.Li, H.Wang, D.Zhu: Friction and wear properties of nano-carbon reinforced Cu/Ti3SiC2/C nanocomposites, Materials Testing59 (2017), No. 11–12, pp. 9819894010.3139/120.111102Suche in Google Scholar

14 C.Hsu, H.Lin, P.Lee: Wear behavior of mechanically alloyed Ti-based bulk metallic glass composites containing carbon nanotubes, Journal of Scientific Conference Proceedings1 (2016), No. 2–3, pp. 10310610.1166/jcp.2009.1028Suche in Google Scholar

15 K. T.Kim, S. I.Cha, S. H.Hong, S. H.Hong: Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science & EngineeringA 430 (2006), No. 1, pp. 273310.1016/j.msea.2006.04.085Suche in Google Scholar

16 H.Wang, Z. H.Zhang, H. M.Zhang, Z. Y.Hu, S. L.Li, X. W.Cheng: Novel synthesizing and characterization of copper matrix composites reinforced with carbon nanotubes. Materials Science & EngineeringA 696 (2017), No. 1, pp. 808910.1016/j.msea.2017.04.055Suche in Google Scholar

17 J.Hwang, T.Yoon, S. H.Jin, T. S.Kim, S. H.Hong, S.Jeon: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process, Advanced Materials25 (2013), No. 46, pp. 6724672910.1002/adma.201302495Suche in Google Scholar PubMed

18 Y.Chen, X.Zhang, E.Liu, C.He, C.Shi, J.Li, P.Nash, N.Zhao: Fabrication of in-situ grown graphene reinforced Cu matrix composites, Scientific Reports6 (2016), pp. 193631937110.1038/srep19363Suche in Google Scholar PubMed PubMed Central

19 M.Rashad, F.Pan, A.Tang, M.Asif, M.Aamir: Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium, Journal of Alloys & Compounds603 (2014), No. 9, pp. 11111810.1016/j.jallcom.2014.03.038Suche in Google Scholar

20 X.Jiang, W.Liu, J.Li, Z.Shao, D.Zhu: Microstructures and mechanical properties of Cu/Ti3SiC2/C/MWCNTs composites prepared by vacuum hot-pressing sintering, Journal of Alloys & Compounds618 (2015), No. 1, pp. 70070610.1016/j.jallcom.2014.08.221Suche in Google Scholar

21 L.Jingrui, J.Xiaosong, S.Ru, S.Zhenyi, Z.Degui, L.Dan: Dispersion characteristics of multi-walled carbon nanotubes and carbon nanoflakes with oxygen plasma, Nanoscience & Nanotechnology Letters7 (2015), No. 7, pp. 58158710.1166/nnl.2015.2007Suche in Google Scholar

22 Y.Chen, M.Cheng, H.Song, S.Zhang, J.Liu, Y.Zhu: Effects of lanthanum addition on microstructure and mechanical properties of as-cast pure copper, Journal of Rare Earths32 (2014), No. 11, pp. 1056106310.1016/S1002-0721(14)60183-6Suche in Google Scholar

23 S.Bera, S. G.Chowdhury, W.Lojkowsky, I.Manna: Synthesis of Cu-Cr and Cu-Cr-Ag alloys with extended solid solubility with nano-Al2O3, dispersion by mechanical alloying and consolidation by high pressure sintering, Materials Science & EngineeringA 558 (2012), No. 48, pp. 29830810.1016/j.msea.2012.08.004Suche in Google Scholar

24 B.Hang, R.Dugas, G.Rousse, P.Rozier, A. M.Abakumov, J. M.Tarascon: Insertion compounds and composites made by ball milling for advanced sodium-ion batteries, Nature Communications7 (2016), pp. 103081031610.1038/ncomms10308Suche in Google Scholar PubMed PubMed Central

25 P.Das, S.Paul, P. P.Bandyopadhyay: Preparation of diamond reinforced metal powders as thermal spray feedstock using ball milling, Surface & Coatings Technology286 (2016), pp. 16517110.1016/j.surfcoat.2015.12.022Suche in Google Scholar

26 P. G.Koppad, H. R. A.Ram, C. S.Ramesh, K. T.Kashyap, R. G.Koppad: On thermal and electrical properties of multi-walled carbon nanotubes/copper matrix nanocomposites, Journal of Alloys & Compounds580 (2013), No. 32, pp. 52753210.1016/j.jallcom.2013.06.123Suche in Google Scholar

27 H.Deng, J.Yi, C.Xia, Y.Yi: Mechanical properties and microstructure characterization of well-dispersed carbon nanotubes reinforced copper matrix composites, Journal of Alloys & Compounds727 (2017), pp. 26026810.1016/j.jallcom.2017.08.131Suche in Google Scholar

28 H.Yue, L.Yao, X.Gao, S.Z.hang, E.Guo, H.Zhang, X.Lin, B.Wang: Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites, Journal of Alloys & Compounds691 (2017), pp. 75576210.1016/j.jallcom.2016.08.303Suche in Google Scholar

29 N.Nayan, A. K.Shukla, P.Chandran, S. B.Bakshi, S. V. S. N.Murty, B.Pant, P. V.Venkitakrishnan: Processing and characterization of spark plasma sintered copper/carbon nanotube composites, Materials Science & EngineeringA 682 (2017), pp. 22923710.1016/j.msea.2016.10.114Suche in Google Scholar

30 M. I.Ramos, N. M.Suguihiro, E. A.Brocchi, R.Navarro, I. G.Solorzano: Microstructure investigation of Cu-Ni base Al2O3, nanocomposites: From nanoparticles synthesis to consolidation, Metallurgical & Materials TransactionsA 48 (2017), No. 5, pp. 2643265310.1007/s11661-017-4000-6Suche in Google Scholar

31 J.Zhou, D.Zhu, L.Tang, X.Jiang, S.Chen, P.Xu, C.Hu: Microstructure and properties of powder metallurgy Cu-1 %Cr-0.65 %Zr alloy prepared by hot pressing, Vacuum131 (2016), pp. 15616310.1016/j.vacuum.2016.06.008Suche in Google Scholar

32 N.Yan, W. L.Wang, S. B.Luo, L.Hu, B.Wei: Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy, Applied PhysicsA 113 (2013), No. 3, pp. 76377010.1007/s00339-013-7586-6Suche in Google Scholar

33 N.Yan, W. L.Wang, S. B.Luo, S. B.Luo, L.Hu, B.Wei: Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy, Applied PhysicsA 113 (2013), No. 3, pp. 76377010.1007/s00339-013-7586-6Suche in Google Scholar

34 P. N.Wang, T. H.Hsieh, C. L.Chiang, M. Y.Shen: Synergetic effects of mechanical properties on graphene nanoplatelet and multi-walled carbon nanotube hybrids reinforced epoxy/carbon fiber composites, Journal of Nanomaterials7 (2015), pp. 83803283804010.1155/2015/838032Suche in Google Scholar

35 Z.Hu, G.Tong, D.Lin, C.Chen, H.Guo, J.Xu, L.Zhou: Graphene-reinforced metal matrix nanocomposites – a review, Materials Science & Technology9 (2016), pp. 93095310.1080/02670836.2015.1104018Suche in Google Scholar

36 Y.Kim, J.Lee, M. S.Yeom: Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites, Nature Communications4 (2013), pp. 2114212010.1038/ncomms3114Suche in Google Scholar PubMed

37 F.Chen, J.Ying, Y.Wang, S.Du, Z.Liu, Q.Huang: Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon96 (2016), pp. 83684210.1016/j.carbon.2015.10.023Suche in Google Scholar

38 T. M.Herceg, S. H.Yoon, M. S. Z.Abidin, E. S.Greenhalgh, A.Bismarck, M. S. P.Shaffer: Thermosetting nanocomposites with high carbon nanotube loadings processed by a scalable powder based method, Composites Science & Technology127 (2016), pp. 6270, 10.1016/j.compscitech.2016.01.017Suche in Google Scholar

39 M.Yang, L.Weng, H.Zhu, F.Zhang, T.Fan, D.Zhang: Leaf-like carbon nanotube-graphene nanoribbon hybrid reinforcements for enhanced load transfer in copper matrix composites, Scripta Materialia138 (2017), pp. 172110.1016/j.scriptamat.2017.05.024Suche in Google Scholar

40 L. J.Yi, T. C.Chang: Loading direction dependent mechanical behavior of graphene under shear strain. Science China55 (2012), No. 6, pp. 1083108710.1007/s11433-012-4721-xSuche in Google Scholar

41 K.Min, N. R.Aluru: Mechanical properties of graphene under shear deformation, Applied Physics Letters98 (2015), No. 1, pp. 01311301311510.1063/1.3534787Suche in Google Scholar

42 I.Akihiko, S.Okamoto: Tensile and shearing properties of vacancy-containing graphene using molecular dynamics simulations, Journal of Communication and Computer1 (2013), pp. 918Suche in Google Scholar

43 X.Gu, Y. C.Chan, D.Yang, B. Y.Wu: The shearing behavior and microstructure of Sn–4Ag–0.5Cu solder joints on a Ni–P–carbon nanotubes composite coating, Journal of Alloys & Compounds468 (2009), No. 1, pp. 55355710.1016/j.jallcom.2008.01.080Suche in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-09-30

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Compression testing of additively manufactured continuous carbon fiber-reinforced sandwich structures
  5. Microstructure and mechanical properties of nano-carbon reinforced Cu-based powder metallurgy friction materials produced by hot isostatic pressing
  6. Thermo-mechanical testing of TiO2 functional coatings using friction stir processing
  7. Ternary melt blend based on poly (lactic acid)/chitosan and cloisite 30B: A study of microstructural, thermo-mechanical and barrier properties
  8. Untersuchungen zur verlässlichen Messung der Härte nach dem UCI – Verfahren (Ultrasonic Contact Impedance)
  9. Electrochemical impedance spectroscopy of sand of varied particle size and water content using the three-electrode system
  10. Recycling of LM25 aluminum alloy scraps
  11. Mechanical fracture characterization of adhesive interfaces: Introducing a new concept for evaluating adhesive quality
  12. Effect of welding processes on mechanical and microstructural properties of S275 structural steel joints
  13. Essential Work of Fracture: Bestimmung des gültigen Ligamentbereiches mittels digitaler 3D-Bildkorrelation
  14. Synthesis, properties and EDM behavior of 10 wt.-% ZrB2 reinforced AA7178 matrix composites
  15. Solid particle erosion wear behavior of severe plastically deformed AA7075 alloys
  16. Performance of coated and uncoated carbide/cermet cutting tools during turning
  17. Assessment of soft materials for anthropomorphic soft robotic fingertips
  18. Application of the grey based Taguchi method and Deform-3D for optimizing multiple responses in turning of Inconel 718
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111217/html
Button zum nach oben scrollen