Startseite Test procedure for stress damage of ferromagnetic materials based on metal magnetic memory effects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Test procedure for stress damage of ferromagnetic materials based on metal magnetic memory effects

  • Guoqing Wang , Lijian Yang , Ping Yan und Liwa Wei
Veröffentlicht/Copyright: 28. Februar 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The metal magnetic memory effect is highly sensitive to stress. This experimental investigation of the magnetic memory signal characteristic of a ferromagnetic material at different stress-strain states has been performed using X80 steel specimens. The magnetic signals were measured in accordance with these procedures at twice the elastic deformation and once the elastic deformation to fracture under the tensile load. The results indicate that magnetic memory signals linearly decrease with increasing tensile load in the elastic state and the reverse in the plastic stage. The intensity clearly increases when damage occurs which can be taken as evidence for damage caused by stress. The test was performed on an actual pipeline with a crack created by a special device. The effect of metal magnetic memory for the evaluation of damage caused by stress has thus been verified by this engineering procedure.

Kurzfassung

Der magnetische Memoryeffekt in Metallen ist sehr sensitive gegenüber Spannungen. Für den vorliegenden Beitrag wurde eine experimentelle Untersuchung der magnetischen Memorysignalcharakteristika eines ferromagnetischen Werkstoffes bei verschiedenen Spannungs-Dehnungs-Zuständen durchgeführt, wobei Proben eines Pipelinestahles × 80 verwandt wurden. Die magnetischen Signale wurden unter Anwendung solcher Prozeduren während einer zweifachen elastischen Verformung und einer einfachen Verformung vom elastischen Zustand bis zum Bruch unter Zugbeanspruchung durchgeführt. Die Ergebnisse zeigen, dass die magnetischen Memorysignale linear mit zunehmender Zugbeanspruchung im elastischen Zustand abnehmen und sich im plastischen Zustand umgekehrt zeigen. Die Intensität nimmt evident mit dem Stadium der Schädigung zu, was als Testkriterium für die Schädigung infolge von Spannungen verwandt werden kann. Das Prüfverfahren wurde an einer aktuellen Pipeline mit einem Riss unter Nutzung eines speziellen Aufbaus angewandt. Die Effektivität der Testprozedur basierend auf dem magentischen Memoryeffekt zur Evaluation einer durch Spannungen verursachten Schädigung wurde so mittels einer technischen Anwendung verifiziert.


* Correspondence Address, Associate Prof. Dr. Guoqing Wang, School of Information Science and Engineering, Shenyang University of Technology, Address: No.111, Shenliao west Road, Open Economic District, 110870, Shenyang City, Liaoning Province, P. R. China, E-mail:

Associate Prof. Dr. Guoqing Wang, born 1980, received his PhD degree at the Shenyang University of Technology, Shenyang, China in 2017. He has been working at the School of Information Science and Engineering, Shenyang University of Technology, Shenyang, China. His research interests include materials testing, stress detection technology and related theory, nondestructive testing technology.

Prof. Lijian Yang, born 1957, received his Master degree from the Harbin Institute of Technology, Harbin, China in 1984, and is a professor and doctoral supervisor at the Shenyang University of Technology, Shenyang, China. His research interests include in-detection technology of long distance oil and gas pipeline and related theory, nondestructive testing technology.

Ping Yan, born 1979, received her Bachelor and Master degree from the Liaoning Shihua University, Fushun, China in 2003 and 2007. Her research interests include materials science and nondestructive testing technology.

Assoc. Prof. Liwa Wei, born 1962, is an associate professor at the School of Mechanical Engineering, Liaoning Shihua University, Fushun, China. Her research interests include materials science and nondestructive testing technology.


References

1 Y. Sumi : Stress concentration problems. Mathematical and Computational Analyses of Cracking Formation2 (2014), pp. 1730, 10.1007/978-4-431-54935-2_2Suche in Google Scholar

2 S. Carcangiu , A.Montisci, M.Usai: Modeling ultrasounds for nondestructive testing applications. Ultrasonic Nondestructive Evaluation Systems12 (2014), pp. 4782, 10.1007/978-3-319-10566-6_3Suche in Google Scholar

3 S. Sorabh , A.Gupta, K.Chandrasekaran: Erratum to: Finite element modeling of magnetic flux leakage from metal loss defects in steel pipeline, Journal of Failure Analysis and Prevention16 (2016), No. 2, pp. 316323, 10.1007/s11668-016-0089-ySuche in Google Scholar

4 J. Jun , J.Lee: Non-destructive evaluation of cracks in a paramagnetic specimen with low conductivity by penetration of magnetic fluid, NDT&E International42 (2009), No. 3, pp. 297303, 10.1016/j.ndteint.2008.12.001Suche in Google Scholar

5 S. Kolokolnikov , A.Dubov, A.Marchenkov: Determination of mechanical properties of metal of welded joints by strength parameters in the stress concentration zones detected by the metal magnetic memory method, Welding in the World58 (2014), No. 14, pp. 699706, 10.1007/s40194-014-0151-xSuche in Google Scholar

6 M. Roskosz : Metal magnetic memory testing of welded joints of ferritic and austenitic steels, NDT&E International44 (2011), No. 3, pp. 305310, 10.1016/j.ndteint.2011.01.008Suche in Google Scholar

7 J. C. Leng , Y.Liu, G. Q.Zhou, Y. T.Gao: Metal magnetic memory signal response to plastic deformation of low carbon steel, NDT&E International55 (2013), No. 3, pp. 4246, 10.1016/j.ndteint.2013.01.005Suche in Google Scholar

8 K. Yao , Z. D.Wang, B.Deng, K.Shen: Experimental research on metal magnetic memory method, Experimental Mechanics52 (2012), No. 3, pp. 305314, 10.1007/s11340-011-9490-3Suche in Google Scholar

9 B. Liu , W. R.Sun, Y.Lin: The study of electromagnetic stress testing method on oil-gas pipelines based on WT, Geomaterials4 (2014), No. 2, pp. 5563, 10.4236/gm.2014.42006Suche in Google Scholar

10 H. Hauser , Y.Melikhov, D. C.Jiles: Examination of the equivalence of ferromagnetic hysteresis models describing the dependence of magnetization on magnetic field and stress, IEEE Transactions on Magnetics45 (2009), No. 4, pp. 19401949, 10.1109/TMAG.2008.2009877Suche in Google Scholar

11 M. Roskosz , P.Gawrilenko: Analysis of changes in residual magnetic field in loaded notched samples, NDT&E International41 (2008), No. 7, pp. 570576, 10.1016/j.ndteint.2008.04.002Suche in Google Scholar

12 A. Dubov , S.Kolokolinov: The metal magnetic memory method application for online monitoring of damage development in steel pipes and welded joints specimens, Welding in the World57 (2013), No. 12, pp. 123136, 10.1007/s40194-012-0011-5Suche in Google Scholar

13 A. Dubov , S.Kolokolinov: Application of the metal magnetic memory method for detection of defects at the initial stage of their development for prevention of failures of power engineering welded steel structures and steam turbine parts, Welding in the World58 (2014), No. 13, pp. 225236, 10.1007/s40194-013-0102-ySuche in Google Scholar

14 L. J. Yang , B.Liu, L. J.Chen, S. W.Gao: The quantitative interpretation by measurement using the magnetic memory method (MMM)-based on density functional theory, NDT&E International55 (2013), No. 3, pp. 1520, 10.1016/j.ndteint.2013.01.002Suche in Google Scholar

15 L. H. Dong , B. S.Xu, S. Y.Dong, S.Li, Q. Z.Chen, D.Wang: Stress dependence of the spontaneous stray field signals of ferromagnetic steel, NDT&E International42 (2009), No. 4, pp. 323327, 10.1016/j.ndteint.2008.12.005Suche in Google Scholar

Published Online: 2018-02-28
Published in Print: 2018-03-27

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of strain rate on stress corrosion cracking of X100 pipeline steel in environments with sulfate-reducing bacteria
  5. Influence of microstructural parameters of indefinite chill alloys on flexural strength and Young's modulus
  6. Corrosion behavior of a 3 % Cr tubing steel in a CO2 saturated high-salinity brine
  7. Comparative study of the testing approaches for the susceptibility of high-strength fasteners to environmental hydrogen embrittlement (EHE)
  8. Combined impact of UV radiation and nitric acid on HDPE containers during outdoor exposure
  9. Analysis of wear properties of Zn-based composites using the Taguchi method
  10. Microstructural and mechanical properties of friction and MIAB welded carbon steel tubes and forging bracket joints
  11. Influence of sintering temperature on mechanical properties of spark plasma sintered pre-alloyed Ti-6Al-4 V powder
  12. Ultrasound on-line measurement of pulverized coal flow in coal-fired boilers
  13. Comparison of seismic performance between thermal insulation concrete and normal concrete shear walls
  14. Test procedure for stress damage of ferromagnetic materials based on metal magnetic memory effects
  15. Lightweight design of an automobile hinge component using glass fiber polyamide composites
  16. Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod
  17. Influence of a stepped feed rate on burr formation when drilling Al-5005
  18. Relationship between extrusion temperature and corrosion resistance of magnesium alloy AZ61
Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111151/html
Button zum nach oben scrollen