Home Properties of fine soils contaminated with gas oil
Article
Licensed
Unlicensed Requires Authentication

Properties of fine soils contaminated with gas oil

  • Fatemeh Mir Mohammad Hosseini , Taghi Ebadi and Abolfazl Eslami
Published/Copyright: August 28, 2017
Become an author with De Gruyter Brill

Abstract

Extensive demands in petroleum products and the presence of these substances in large areas of industrial and nonindustrial sectors cause contamination of some soil layers by different means. It is not always possible or the only way to remedy these layers prior to using them for engineering purposes. Instead, considering the changes happening in their mechanical properties may result in a more economical and optimal utilization. Among all petroleum products, gas oil due to the high volume of product and wide use in industry, transport and agriculture, has the largest share in the pollution of contaminated sites. The important point is that the overflow and spills of many diesel engines and gas oil tanks penetrate the bedding above the foundations of mentioned machines and facilities. These foundations which are designed based on the geotechnical parameters of the bed soils, must have a satisfactory performance through the years under various loadings. In this study, extensive physical and mechanical tests on remolded samples of pure and sandy clays contaminated with different gas oil contents have been performed to examine the influences of gas oil on the mechanical properties of sites consisting of fine soils. Results indicate a decrease in Atterberg limits and an increase in maximum dry density with increasing gas oil content. The shear strength parameters (cohesion and friction angle) of fine soils both exhibit a turning change point at 8 % gas oil content, while their variations trends are quite opposed.

Kurzfassung

Erhebliche Anforderungen in der Herstellung von petrochemischen Produkten und der Präsenz solcher Substanzen in großen industriellen und nicht-industriellen Gebieten zieht es nach sich, dass einige Erdschichten auf verschiedene Art und Weise kontaminiert werden. Es ist nicht immer möglich oder der einzige Weg, diese Schichten zu entfernen, bevor sie für ingenieurmäßige Zwecke genutzt werden können. Anstatt dessen kann eine Berücksichtigung der stattfindenden Veränderung der mechanischen Eigenschaften in einer ökonomischen und optimalen Nutzung resultieren. Unter allen petrochemischen Produkten hat Gasöl aufgrund des hohen Volumens des Produktes und seiner breitflächigen Anwendung in der Industrie, im Verkehrswesen und im Ackerbau den größten Anteil an der Verschmutzung kontaminierter Flächen. Der wichtige Punkt ist hierbei, dass der Überschuss und die Verschüttung aus vielen Dieselmotoren und Gasöl-Tanks in das Bett eindringt, auf dem die Fundamente der genannten Maschinen und Einrichtungen errichtet sind. Diese Fundamente, die basierend auf den geotechnischen Parametern der jeweiligen Erdbettungen designt werden, müssen über die Jahre hinweg eine zufriedenstellende Performanz unter den verschiedenen Belastungen aufweisen. In der diesem Beitrag zugrundeliegenden Studie wurden umfassende physikalische und mechanische Tests mit aufgearbeiteten reinen und sandhaltigen Tonerden durchgeführt, die mit verschiedenen Gasölanteilen kontaminiert waren, um die Einflüsse des Gasöls auf die mechanischen Eigenschaften der Bereiche zu untersuchen, die aus feinen Erden bestehen. Die Ergebnisse deuten auf einen Anstieg der Atterberg-Grenzen hin, sowie auf eine Erhöhung der maximalen trockenen Dichte mit steigendem Gasöl-Gehalt. Die Scherfestigkeitsparameter (Kohäsion und Reibwinkel) der feinen Erden zeigen beide einen Wendepunkt bei einem Gehalt von 8 % Gasöl, während ihre Variationstrends sich umgekehrt verhalten.


*Correspondence Address, Taghi Ebadi, Associate Prof. of Civil & Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran, Po. Box: 15875-4413, E-mail: , ,

Fatemeh Mir Mohammad Hosseini, born in 1985, holds a BSc in Civil Engineering from Amirkabir University of Technology, Tehran, Iran, and an MSc. from Tehran University. She is a PhD student at the Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.

Assoc. Prof. Dr. Taghi Ebadi, born in 1961, holds a BSc in Civil Engineering and a MSc in Geotechnical Engineering from Amirkabir University of Technology, Tehran, Iran, and a PhD. from Concordia University, Montreal, Canada. He is Associate Professor at the Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.

Prof. Dr. Abolfazl Eslami, born in 1960, holds a BSc in Civil Engineering from Sharif University of Technology, Tehran, Iran, an MSc. from Amirkabir University of Technology, Tehran, and a PhD. from Ottawa University, Ottawa, Canada. Now, he is Professor at the Civil and Environmental Engineering Faculty, Amirkabir University of Technology, Tehran, Iran.


References

1 P.Fine, E. R.Graber, B.Yaron: Soil interactions with petroleum hydrocarbons abiotic processes, Soil Technology10 (1997), pp. 133153S0933-3630(96)00088-8Search in Google Scholar

2 V. K.Puri: Geotechnical Aspects of oil-contaminated sands, soil and sediment contamination9 (2000), No. 4, pp. 35937410588330091134301Search in Google Scholar

3 E. E.Cook, V. K.Puri, E. C.Shin: Geotechnical characteristics of crude oil-contaminated sands, Proc. of the 2nd Int. Offshore Polar Eng. Conf. San Francisco, USA (1992), pp. 384387Search in Google Scholar

4 E.Khosravi, H.Ghasemzadeh, M. R.Sabour, H.Yazdani: Geotechnical properties of gas oil-contaminated kaolinite, Engineering Geology166 (2013), pp. 1116Enggeo.2013.08.004Search in Google Scholar

5 H. A.Al-Sanad, W. K.Eid, N. F.IsmaeI: Geotechnical properties of oil contaminated Kuwaiti sand, Journal of Geotechnical Engineering121 (1995), pp. 40741210.1061/(ASCE)0733-9410(1995)121:5(407)Search in Google Scholar

6 H. A.Al-Sanad, N. F.IsmaeI: Aging effect on oil contaminated Kuwaiti sand, Journal of Geotechnical & Geoenvironmental Engineering123 (1997), pp. 29029310.1061/(ASCE)1090-0241(1997)123:3(290)Search in Google Scholar

7 M.Khamehchiyan, A. H.Charkhabi, M.Tajik: Effects of crude oil contamination on geotechnical properties of clayey and sandy soils, Engineering Geology89 (2007), pp. 22022910.1016/j.enggeo.2006.10.009Search in Google Scholar

8 A. K.Nazir: Effect of motor oil contamination on geotechnical properties of over consolidated clay, Alexandria Engineering Journal50 (2011), pp. 33133510.1016/j.aej.2011.05.002Search in Google Scholar

9 M.Kermani, T.Ebadi: The effect of oil contamination on the geotechnical properties of fine-grained soils, Soil and Sediment Contamination: An International Journal21 (2012), pp. 65567110.1080/15320383.2012.672486Search in Google Scholar

10 S. K.Singh, R. K.Srivastava, S.John: Settlement characteristics of clayey soils contaminated with petroleum hydrocarbons, Soil Sediment Contamination17 (2008), pp. 29030010.1080/15320380802007028Search in Google Scholar

11 T. AlbertYeung: Diffuze double-layer equations in SI units, Journal of Geotechnical Engineering18 (1992), No. 12, pp. 2000200510.1061/(ASCE)0733-9410(1992)118:12(2000)Search in Google Scholar

12 L.di Matteo, F.Bigotti, R.Ricco: Compressibility of kaolinitic clay contaminated by ethanol-gasoline blends, Journal of Geotechnical and Geoenvironmental Engineering137 (2011), pp. 84684910.1061/(ASCE)GT.1943-5606.0000494Search in Google Scholar

13 D. E.Foreman, D. E.Daniel: Permeation of heavy metal ion levels, Journal of Geotechnical Engineering, ASCE12 (1986), pp. 669681Search in Google Scholar

14 A.Sridharan, A.El-Shafei, N.Miura: A study on the dominating mechanisms and parameters influencing the physical properties of Ariake clay, International Association of Lowland Technology Journal2 (2000), pp. 5570Search in Google Scholar

15 M.Olgun, M.Yıldız: Effect of organic fluids on the geotechnical behavior of a highly plastic clayey soil, Applied Clay Science48 (2010), pp. 61562110.1016/j.clay.2010.03.015Search in Google Scholar

16 H.van Olphen: An Introduction to Clay Colloid Chemistry, Wiley Interscience, New York, USA (1997)Search in Google Scholar

17 G.Mesri, R. E.Olson: Mechanisms controlling the permeability of clays, Clays and Clay Minerals19 (1971), No. 3, pp. 15115810.1346/CCMN.1971.0190303Search in Google Scholar

18 J. K.Mitchell: Fundamentals of Soil Behavior, John Wiley, New York, USA (1976)Search in Google Scholar

19 J. J.Bowders, D. E.Daniel, G. P.Broderick, H. M.Liljestrand: Methods for testing the compressibility of clay liners with landfill leachate, ASTM STP 886 – Proc. of the Fourth Symposium on Hazardous and Industrial Solid Waste Testing, American Society for Testing Materials, West Conshohocken, USA (1985), pp. 233250Search in Google Scholar

20 D.Zhao: Experimental Study of Stress-Strain and Shear Strength Behavior of Contaminated Cohesive Soils, PhD Thesis, The Johns Hopkins University, Baltimore, Maryland, USA (1996)Search in Google Scholar

21 A.Kaya, H. Y.Fang: Experimental evidence of reduction in attractive and repulsive forces between clay particles permeated with organic fluids, Canadian Geotechnical Journal, Technical Note42 (2005), pp. 632640/pdf/10.1139/t04-099Search in Google Scholar

22 Y. B.Acar, I.Olivieri: Pore Fluid Effects on the Fabricated Hydraulic Conductivity of Laboratory Compacted Clay, Transportation Research Board (1989), No. 1219, pp. 144159Search in Google Scholar

23 N. J.Meegoda, P.Ratnaweera: Compressibility of contaminated fine-grained soils, Geotechnical Testing Journal17 (1994), No. 1, pp. 10111210.1520/GTJ10078JSearch in Google Scholar

24 H.Ur-Rehman, S. N.Abduljauwad, T.Akram: Geotechnical behavior of oil-contaminated fine-grained soils, Electronic Journal of Geotechnical Engineering12 A (2007), pp. 1523Search in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111075/pdf
Scroll to top button