Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
-
Ponnurangam Raja
and Rajalingam Malayalamurthi
Abstract
This paper describes the effects of deep cryo treated high speed steel. In recent research, the cryo treatment has been acknowledged by improving the life or quality performance of tool materials. The molybdenum based high speed tool steel is frequently used in industry till date. Therefore, it is essential to observe the tool performance in machining of medium carbon steel (AISI 1045) on dry turning operation. The effect of untreated and deep cryo treated tool in turning of medium carbon steel is analyzed using Taguchi approach. The results indicated that the main cutting force obtained from cryo treated tool significantly decreased to 29 % when compared with the untreated tool. Also, it revealed that the surface roughness of machined component using deep cryo treated tool was better than of the untreated tool.
Kurzfassung
Der vorliegende Beitrag beschreibt die Auswirkungen der Tiefkältebehandlung eines Hochgeschwindigkeitsstahls. In kürzlich durchgeführten Forschungsarbeiten wurde die Kältebehandlung angewendet, um die Lebensdauer und Qualität von Werkzeugmaterialien zu verbessern. Der molybdän-basierte Hochgeschwindigkeitsstahl wird bis heute häufig in der Industrie eingesetzt. Daher ist es essentiell, das Werkzeugverhalten bei der Bearbeitung eines Kohlenstoffstahls (AISI 1045) zu beobachten. Das Verhalten des unbehandelten und tiefkältebehandelten Werkzeuges auf den Kohlenstoffstahl wurde mittels des Taguchi-Ansatzes analysiert. Die Ergebnisse deuten darauf hin, dass die Hauptschnittkraft nach der Tiefkältebehandlung des Werkzeuges signifikant auf 29 % im Vergleich zum unbehandelten Werkzeug herabgesetzt wurde. Außerdem stellte sich heraus, dass die Oberflächenrauheit der bearbeiteten Komponente bei der Verwendung des tiefkältebehandelten Stahls besser war als bei der Nutzung des unbehandelten Stahls.
References
1 A. R.Machado, M. B.da Silva: Metal Machining, 3rd Ed., Editora da Universidade Federal de Uberlândia, MG, Brazil (2003) in Portuguise)Search in Google Scholar
2 ASM Handbook Vol. 16: Machining, ASM International, Materials Park, Ohio, USA (1989)Search in Google Scholar
3 http://www.strategyr.com/HighSpeedSteelHSSMetalCuttingToolsMarketReport.asp (2015)Search in Google Scholar
4 K. C.Jain, A. K.Chitale: Text Book of Production Engineering, 2nd Ed., PHI, New Delhi, India (2010)Search in Google Scholar
5 S. SinghGill, R.Singh, J.Singh, H.Singh: Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2HSS turning tool for estimation of flank wear, Expert Systems with Applications39 (2012), No. 4, pp. 4171–418010.1016/j.eswa.2011.09.117Search in Google Scholar
6 E. M.Trent, P. K.Wright: Metal Cutting, 4th Ed., Butterworth-Heinemann, New York, USA (2000)10.1016/B978-075067069-2/50007-3Search in Google Scholar
7 S.Akincioğlu, H.Gökkaya, İ.Uygur: A review of cryogenic treatment on cutting tools, The International Journal of Advanced Manufacturing Technology78 (2015) No. 9–12, pp. 1609–162710.1007/s00170-014-6755-xSearch in Google Scholar
8 F.Farhani, K. S.Niaki, S. E.Vahdat, A.Firozi: Study of effects of deep cryotreatment on mechanical properties of 1.2542 tool steel, Materials and Design42 (2012), pp. 279–28810.1016/j.matdes.2012.05.059Search in Google Scholar
9 S.Singh, S.Singh, J.Singh: Improvement in tool life of M2HSS tools by cryogenic treatment, Journal of Metallurgical Engineering1 (2011), pp. 47–61Search in Google Scholar
10 S. SinghGill: Machining performance of cryogenically treated AISI M2 high speed steel tools, Journal of Engineering Research and Studies3 (2012), No. 2, pp. 45–49Search in Google Scholar
11 L. P.Singh, J.Singh: Effects of cryogenic treatment on high-speed steel tools, Journal of Engineering and Technology1 (2011) No. 2, pp. 88–9310.4103/0976-8580.86640Search in Google Scholar
12 A.Molinari, M.Pellizzari, S.Gialanella, G.Straffelini, K. H.Stiasny: Effect of deep cryogenic treatment on the mechanical properties of tool steels, Journal of Materials Processing Technology118 (2001), No. 1–3, pp. 350–35510.1016/s0924-0136(01)00973-6Search in Google Scholar
13 D. E.DimlaSr., P. M.Lister: On-line metal cutting tool condition monitoring – I: Force and vibration analyses, International Journal of Machine Tools and Manufacture40 (2000), No. 5, pp. 739–76810.1016/s0890-6955(99)00084-xSearch in Google Scholar
14 B.Sick: On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research, Mechanical Systems and Signal Processing16 (2002), No. 4, pp. 487–54610.1006/mssp.2001.1460Search in Google Scholar
15 F. J. JosePontes, A. P.Paiva, P. P.Balestrassi, J. R.Ferreira, M. B.Silva: Optimization of radial basis function neural network employed for prediction of surface roughness in hard turning process using Taguchi's orthogonal arrays, Expert Systems with Applications39 (2012), No. 9, pp. 7776–778710.1016/j.eswa.2012.01.058Search in Google Scholar
16 R. K.Roy: A Primer on the Taguchi Method, 2nd Ed., Society of Manufacturing Engineers, USA (2010)Search in Google Scholar
17 N.Mandal, B.Doloi, B.Mondal, R.Das: Optimization of flank wear using zirconia toughened alumina (ZTA) cutting tool: Taguchi method and regression analysis, Measurement44 (2011), No. 10, pp. 2149–215510.1016/j.measurement.2011.07.022Search in Google Scholar
18 W. H.Yang, Y. S.Tarng: Design optimization of cutting parameters for turning operations based on the Taguchi method, Journal of Materials Processing Technology84 (1998), No. 1–3, pp. 122–12910.1016/s0924-0136(98)00079-xSearch in Google Scholar
19 S.Akıncıoğlu, H.Gökkaya, İ.Uygur: The effects of cryogenic-treated carbide tools on tool wear and surface roughness of turning of Hastelloy C22 based on Taguchi method, The International Journal of Advanced Manufacturing Technology82 (2015), No. 1–4, pp. 303–31410.1007/s00170-015-7356-zSearch in Google Scholar
20 R.Autay, M.Kchaou, F.Dammak: Experimental investigation of the tribological behaviour of carbon and low-alloy steels sliding against HSS, Mechanics and Industry16 (2015), No. 1, pp. 1–810.1051/meca/2014076Search in Google Scholar
21 ASM Handbook Vol. 4: Heat Treating, 9th Ed., ASM, Materials Park, Ohio, USA (1991)Search in Google Scholar
22 S.Khamel, N.Ouelaa, K.Bouacha: Analysis and prediction of tool wear, surface roughness and cutting forces in hard turning with CBN tool, Journal of Mechanical Science and Technology26 (2012), No. 11, pp. 3605–361610.1007/s12206-012-0853-1Search in Google Scholar
23 H.Aouici, A.Yallesem, A.Belbah, M. F.Ameur, M.Elbah: Experimental investigation of cutting parameters influence on surface roughness and cutting forces in hard turning of X38CrMoV5-1 with CBN tool, Sadhana – Academy Proceedings in Engineering Sciences38 (2013), No. 3, pp. 429–44510.1007/s12046-013-0147-zSearch in Google Scholar
24 C.Donaldson, G. H.LeCain, V. C.Goold: Tool Design, 3rd Ed., McGraw-Hill, New York, USA (2003)Search in Google Scholar
25 G. R.Nagpal: Machine Tool Engineering, 10th Ed., Khanna Publishers, New Delhi, India (2012)Search in Google Scholar
26 S. SinghGill, H.Singh, R.Singh, J.Singh: Cryoprocessing of cutting tool materials – A review, The International Journal of Advanced Manufacturing Technology48 (2009), No. 1–4, pp. 175–19210.1007/s00170-009-2263-9Search in Google Scholar
27 P. G.Benardos, G. C.Vosniakos: Predicting surface roughness in machining: A review, International Journal of Machine Tools and Manufacture43 (2003), No. 8, pp. 833–84410.1016/S0890-6955(03)00059-2Search in Google Scholar
28 T. V. SreeramaReddy, T.Sornakumar, M. VenkataramaReddy: Turning studies of deep cryogenic treated P-40 tungsten carbide cutting tool inserts – Technical communication, Machining Science and Technology13 (2009), No. 2, pp. 269–28110.1080/10910340902979754Search in Google Scholar
29 H.-B.He, W.-Q.Han, H.-Y.Li, D.-Y.Li, J.Yang, T.Gu, T.Deng: Effect of deep cryogenic treatment on machinability and wear mechanism of TiAlN coated tools during dry turning, International Journal of Precision Engineering and Manufacturing15 (2014), No. 4, pp. 655–66010.1007/s12541-014-0384-zSearch in Google Scholar
© 2017, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
- Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
- Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
- Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
- Comparison of the welding behavior of P/M borated and I/M borated stainless steel
- Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
- Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
- Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
- Strength and mechanical response of C/C composite open-hole and bolted plates
- Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
- Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
- Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
- Surface roughness analysis of greater cutting depths during hard turning
- Properties of fine soils contaminated with gas oil
- Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Articles in the same Issue
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
- Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
- Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
- Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
- Comparison of the welding behavior of P/M borated and I/M borated stainless steel
- Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
- Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
- Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
- Strength and mechanical response of C/C composite open-hole and bolted plates
- Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
- Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
- Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
- Surface roughness analysis of greater cutting depths during hard turning
- Properties of fine soils contaminated with gas oil
- Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load