Home Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
Article
Licensed
Unlicensed Requires Authentication

Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics

  • Guangkai Sun , Daoming Qu and Zhenggan Zhou
Published/Copyright: August 28, 2017
Become an author with De Gruyter Brill

Abstract

The epoxy resin-bonded lead-steel structures are widely used in nuclear industry for the protection of intense radiation, and the accurate detection of the interfacial debonding is very important. This paper studies the detection of interfacial debonding in the epoxy resin-bonded lead-steel structure using laser ultrasonic method. Two-dimensional finite element method is used to simulate the propagation of laser generated ultrasonic waves in lead-steel bonded structure and the interaction with interfacial debonding. The wave reflection and the attenuation occurred at the good bonding interface and the debonding interface are clearly shown. The reflection and attenuation of laser ultrasonic induced by the interfacial debonding are analyzed theoretically and experimentally, and the feature signals for the characterization of interfacial debonding are extracted. The appropriate wave frequency and measurement position are analyzed. The C-scan image of the specimen is obtained using the laser ultrasonic method. The results show that the laser ultrasonic method is effective for the noncontact detection of interfacial debonding in epoxy resin-bonded lead-steel structure, and the interfacial debonding with a diameter larger than 4 mm can be imaged clearly with laser ultrasonic C-scan method.

Kurzfassung

Epoxidharzgeklebte Blei-Stahl-Strukturen werden breitflächig in der Nuklearindustrie zum Schutz gegen intensive Strahlung angewendet. Daher ist eine akkurate Detektion von Grenzflächenablösungen in diesem Bereich sehr wichtig. In der diesem Beitrag zugrundeliegenden Forschungsarbeit wurde die Grenzflächenablösung in epoxidharzgeklebten Blei-Stahl-Strukturen mittels des Laser-Ultraschall-Verfahrens untersucht. Hierzu wurde die zweidimensionale Finite Elemente Methode angewendet, um den Fortschritt der lasergenerierten Ultraschallwellen in der geklebten Blei-Stahl-Struktur zu simulieren, ebenso wie die entsprechende Wechselwirkung mit Grenzflächenablösungen. Die Wellenreflektion und die Abschwächung des Laserultraschalls infolge der Grenzflächenablösung wurden theoretisch und experimentell analysiert, und die kennzeichnenden Signale zur Charakterisierung von Grenzflächenablösungen wurden identifiziert. Auch die geeignete Wellenfrequenz und Messposition wurden analysiert. Das C-Scan-Bild der Proben wurde mittels des Laser-Ultraschallverfahrens ermittelt. Die Ergebnisse zeigen, dass das Laser-Ultraschall-Verfahren effektiv ist, um eine berührungslose Detektion der Grenzflächenablösung in epoxiydharzgeklebten Blei-Stahl-Strukturen zu detektieren, und dass eine Grenzflächenablösung mit einem Durchmesser von mehr als 4 mm deutlich mit dem Laser-Ultraschall-C-Scan-Verfahren abgebildet werden kann.


*Correspondence Address, Dr. Guangkai Sun, School of Instrument Science and Opto Electronics Engineering, Beijing Information Science & Technology University, 12 Xiaoyingdong Lu, Haidian District, 100192 010 Beijing, P. R. China, E-mail:

Dr. Guangkai Sun, born in 1984, studied Nondestructive Testing Technologies and completed his PhD at Beijing University of Aeronautics and Astronautics, Beijing, China. Currently, he is employed as a lecturer at Beijing Information Science & Technology University. His main fields of interest are novel sensing and testing technologies.

Daoming Qu, born in 1993, studied Precision Testing and Measuring Technologies and graduated from Tianjin University, Tianjin, China. Currently, he is a master candidate and studies at Beijing Information Science & Technology University, China. His main fields of interest are novel sensing and testing technologies.

Prof. Dr. Zhenggan Zhou, born in 1967, finished his PhD at Harbin Institute of Technology, Harbin, China. Currently, he is the leader of the NDT group at Beijing University of Aeronautics and Astronautics, China. He is also Vice Chairman of the Chinese Society of NDT, and his main fields of interest are ultrasonic and infrared testing technologies.


References

1 J. W.Li, G. P.Tang, H. Y.Huo, G. Y.Tian, Z. G.Zhou: Study on non-contact nondestructive testing techniques of bonding structure with steel-lead alloys, China Adhesives22 (2013), pp. 213310.13416/j.ca.2013.07.020Search in Google Scholar

2 K. S.Zhang, Z. G.Zhou, J. H.Zhou, G. K.Sun: Characteristics of laser ultrasound interaction with multi-layered dissimilar metals adhesive interface by numerical simulation, Applied Surface Science353 (2015), pp. 28429010.1016/j.apsusc.2015.06.103Search in Google Scholar

3 G. K.Sun, Z. G.Zhou: Characterization of delaminations in composite laminates by laser ultrasonics, Materials Testing58 (2016), No. 10, pp. 87788610.3139/120.110928Search in Google Scholar

4 R. M.White: Generation of elastic waves by transient surface heating, Journal of Applied Physics34 (1963), pp. 3559356710.1063/1.1729258Search in Google Scholar

5 M. P.Felix: Laser-generated ultrasonic beams, Rev. Sci. Instrum45 (1974), No. 9, pp. 1106110810.1063/1.1686819Search in Google Scholar PubMed

6 T.Sanderson, C.Ume, J.Jarzynski: Laser generated ultrasound: A thermoelastic analysis of the source, Ultrasonics35 (1997), pp. 11512410.1016/S0041-624X(96)00104-7Search in Google Scholar

7 L. P.Scudder, D. A.Hutchins, N.Guo: Propagation of laser generated broadband ultrasonic pulses in a thick carbon fibre composite plate, Review of progress in quantitative nondestructive evaluation12B (1993), pp. 1209121610.1007/978-1-4615-2848-7_154Search in Google Scholar

8 F.Enguehard, L.Bertrand: Effects of optical penetration and laser pulse duration on laser generated longitudinal acoustic waves, Journal of Applied Physics82 (1997), No. 4, pp. 1532153810.1063/1.365954Search in Google Scholar

9 K. C.Baldwin, T. P.Berndt, M. J.Ehrlich: Narrowband laser generation/air-coupled detection: Ultrasonic system for on-line process control of composites, Ultrasonics37 (1999), pp. 32933410.1016/S0041-624X(99)00011-6Search in Google Scholar PubMed

10 C. C.Chia, J. R.Lee, C. Y.Park, H. M.Jeong: Laser ultrasonic anomalous wave propagation imaging method with adjacent wave subtraction: Application to actual damages in composite wing, Optics and Laser Technology44 (2012), pp. 42844010.1016/j.optlastec.2011.08.007Search in Google Scholar

11 M.Martarelli, P.Chiariotti, M.Pezzola, P.Castellini: Delamination detection in composites by laser ultrasonics, AIP Conf. Proc.1600 (2014), pp. 40541210.1063/1.4879609Search in Google Scholar

12 A. A.Karabutov, N. B.Podymova: Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method, Composites Part B56 (2014), pp. 23824410.1016/j.compositesb.2013.08.040Search in Google Scholar

13 Z. G.Zhou, G. K.Sun, X. C.Chen, J.Wang: Detection of drilling-induced delamination in aeronautical composites by noncontact laser ultrasonic method, Applied Optics53 (2014), No. 12, pp. 2656266310.1364/AO.53.002656Search in Google Scholar PubMed

14 B.Park, Y. K.An, H.Sohn: Visualization of hidden delamination and debonding in composites through noncontact laser ultrasonic scanning, Compos. Sci. Technol. (2014), No. 100, pp. 101810.1016/j.compscitech.2014.05.029Search in Google Scholar

15 M.Dubois, T. E.Drake: Evolution of industrial laser-ultrasonic systems for the inspection of composites, Nondestructive Testing and Evaluation26 (2011), pp. 21322810589759.2011.573552Search in Google Scholar

16 P. K.Chinta, K.Mayer, K. J.Langenberg: Numerical modeling of elastic waves in inhomogeneous anisotropic media using 3D-elasto-dynamic finite integration technique, AIP Conf. Proc.1433 (2012), pp. 48749010.1063/1.3703233Search in Google Scholar

17 C. T.Ng, M.Veidt, L. R. F.Rose, C. H.Wang: Analytical and finite element prediction of Lamb wave scattering at delamination in quasi-isotropic composite laminates, Journal of Sound and Vibration331 (2012), pp. 4870488310.1016/j.jsv.2012.06.002Search in Google Scholar

18 J. H.Lee, C. P.Burger: Finite element modeling of laser-generated lamb waves, Comput. Struct.54 (1995), pp. 49951410.1016/0045-7949(94)00348-7Search in Google Scholar

19 M. B.Klein, G. D.Bacher, A. G.Jepsen, D.Wright, W. E.Moerner: Homodyne detection of ultrasonic surface displacement using two-wave mixing in photorefractive polymers, Conference on Process Control and Sensors for Manufacturing3589 (1999), pp. 222910.1117/12.339966Search in Google Scholar

20 M.Yang, Q.Liu, H. S.Zhao, Z.Li, B.Liu, X. D.Li, F. Y.Meng: Automatic X-ray inspection for escaped coated particles in spherical fuel elements of high temperature gas-cooled reactor, Energy68 (2014), pp. 38539810.1016/j.energy2014.02.076Search in Google Scholar

21 M.Yang, J. K.Liang, J. H.Zhang, H. D.Gao, F. Y.Meng, X. D.Li, S.-J.Song: Non-local means theory based Perona-Malik model for image den- osing, Neurocomputing120 (2013), pp. 26226710.1016/j.neucom.2012.08.063Search in Google Scholar

22 M.Yang, J.Pan, J. H.Zhang, S.-J.Song, F. Y.Meng, X. D.Li, DWei: Center of rotation automatic measurement for fan-beam CT system based on sinogram image features, Neurocomputing120 (2013), pp. 25025710.1016/j.neucom.2012.08.066Search in Google Scholar

23 M.Yang, R.Li, J. H.Duan, L.Liang, X. D.Li, W.Liu, F. Y.Meng: Analysis of DR testing blind zone of spherical fuel elements for 10 MW high-temperature gas-cooled reactor, NDT & E International60 (2013), pp. 778610.1016/j.ndteint.2013.07.006Search in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111068/pdf?lang=en
Scroll to top button