Home Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy

  • Tingfeng Song , Xiaosong Jiang , Jiaxin Jiang and Degui Zhu
Published/Copyright: August 28, 2017
Become an author with De Gruyter Brill

Abstract

This research investigates effects of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy which has a wide variety of applications in automobile and rail transit engineering. Al-Zn-Mg alloy is exposed to cyclic loadings and contact pressure. The cyclic stress-strain curve and displacement amplitude curve under different contact pressure of Al-Zn-Mg alloy were investigated using point contact multiaxial fretting fatigue test equipment. Based on cyclic stress-strain curve and displacement amplitude curve under different contact pressure, fretting wear characteristics, fretting fatigue fracture properties and fretting fatigue lives as well as the effects of contact pressure on multiaxial fretting fatigue damage and fretting fatigue fracture mechanisms of Al-Zn-Mg alloy were extensively analyzed.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Forschungsarbeit wurden die Auswirkungen des Kontaktdruckes auf das multiaxiale Schwingverschleißverhalten einer Al-Zn-Mg-Legierung untersucht, die breite Anwendung im Automobil- und Schienenfahrzeugbau findet. Die Al-Zn-Mg-Legierung wurde einer zyklischen Belastung und entsprechendem Kontaktdruck ausgesetzt. Es wurde die zyklische Spannungs-Dehnungs-Kurve der Al-Zn-Mg-Legierung unter verschiedenen Kontaktdrücken untersucht, indem eine Schwingverschleiß-Versuchseinrichtung mit Punktkontakt verwendet wurde. Basierend auf der zyklischen Spannungs-Dehnungs-Kurve und der Verschiebungs-Amplituden-Kurve bei verschiedenen Kontaktdrücken wurden die Charakteristika, die Brucheigenschaften und die Lebensdauer sowie die Auswirkungen des Kontaktdruckes auf die multiaxiale Schädigung durch Schwingverschleiß und die Schwingverschleißbruchmechanismen der Al-Zn-Mg-Legierung ausgiebig analysiert.


*Correspondence Address, Assoc. Prof. Dr. Xiaosong Jiang, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, P.R. China, E-mail: ,

Tingfeng Song, born in 1993, graduated in Materials Science and Engineering at Southwest Jiaotong University, Chengdu, China in 2015. He is a Master of Science student in Materials Science and Engineering at the same university and doing research onwelding, fatigue and wear resistance.

Dr. Xiaosong Jiang, born in 1979, graduated with a Bachelor degree in Powder Metallurgy from Central South University, Changsha, China in 2002. He completed his Master of Science in Materials Physics and Chemistry at Southwest Jiaotong University, Chengdu, China in 2007. Then, in 2011, he completed his PhD degree at Tongji University, Shanghai, China. His main research fields are powder metallurgy, welding and fretting fatigue.

Assist. Prof. Jiaxin Jiang, born in 1987, graduated with Bachelor and Master degree in Mechanical Engineering from Shanghai University, Shanghai, China in 2008 and 2011, respectively. She is Assistant Professor at Chengdu Textile College, Chengdu, China. Her main research fields are fatigue and wear resistance.

Assoc. Prof. Dr. Degui Zhu, born in 1965, graduated with a Bachelor, Master and PhD degree in Materials Science and Engineering from Southwest Jiaotong University, Chengdu, China in 1986,1989 and 2013, respectively. He is Associate Professor at the same university. His main research fields are powder metallurgy, welding, ceramics and fatigue.


References

1 D. A.Hills, D.Nowell, J. J.O’Connor: On the mechanics of fretting fatigue, Wear125 (1988), No. 1–2, pp. 12914610.1016/0043-1648(88)90198-6Search in Google Scholar

2 N.Noraphaiphipaksa, A.Manonukul, C.Kanchanomai, Y.Mutoh: Fretting-contact-induced crack opening/closure behaviour in fretting fatigue, International Journal of Fatigue88 (2016), pp. 18519610.1016/j.ijfatigue.2016.03.029Search in Google Scholar

3 M.Kumar, N. G.Ross: Influence of temper on the performance of a high-strength Al-Zn-Mg alloy sheet in the warm forming processing chain, Journal of Materials Processing Technology231 (2016), pp. 18919810.1016/j.jmatprotec.2015.12.026Search in Google Scholar

4 I.Černý, J.Sís, D.Mikulová: Short fatigue crack growth in an aircraft Al alloy of a 7075 type after shot peening, Surface & Coatings Technology243 (2014), No. 12, pp. 202710.1016/j.surfcoat.2012.06.008Search in Google Scholar

5 T.Dursun, C.Soutis: Recent developments in advanced aircraft aluminium alloys, Materials & Design56 (2014), No. 4, pp. 86287110.1016/j.matdes.2013.12.002Search in Google Scholar

6 Z. Q.Hu, S. S.Wu: Tensile, fatigue, and corrosion fatigue behavior of high performance die cast aluminum alloy, Journal of Materials Research30 (2015), No. 6, pp. 83384010.1557/jmr.2015.45Search in Google Scholar

7 E.Acer, E.Cadirli, H.Erol, M.Gündüz: Effect of growth rate on the microstructure and microhardness in a directionally solidified Al-Zn-Mg alloy, Metallurgical and Materials Transactions A47 (2016), No. 6, pp. 3040305110.1007/s11661-016-3484-9Search in Google Scholar

8 X. S.Jiang, J. R.Li, W. X.Liu, D. G.Zhu: Experimental and finite element analysis of stress amplitude on fretting fatigue behaviour of Al-Zn-Mg alloy, Optoelectronics and Advanced Materials, Rapid Communications3–4 (2017), No. 11, pp. 267273Search in Google Scholar

9 E.Pouillier, A. F.Gourgues, D.Tanguy, E. P.Busso: A study of intergranular fracture in an aluminium alloy due to hydrogen embrittlement, International Journal of Plasticity34 (2012), No. 34, pp. 13915310.1016/j.ijplas.2012.01.004Search in Google Scholar

10 X. S.Jiang, G. Q.He, B.Liu, Z. Y.Zhu, W. H.Zhang: Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings, International Journal of Minerals, Metallurgy and Materials18 (2011), pp. 43744310.1007/s12613-011-0459-0Search in Google Scholar

11 K.Ma, T.Hua, H.Yang, T.Topping, A.Yousefiani, E. J.Lavernia, J. M.Schoenung: Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al–Zn–Mg alloys, Acta Material103 (2016), pp. 15316410.1016/j.actamat.2015.09.017Search in Google Scholar

12 B.Liu, G.He, X.Jiang, M.Zhu: Multi-axial fretting fatigue behaviour of 35CrMoA steel, Fatigue and Fracture of Engineering Materials and Structures34 (2011), No. 12, pp. 97498110.1111/j.1460-2695.2011.01586.xSearch in Google Scholar

13 C.Montebello, S.Pommier, K.Demmou, J.Leroux, J.Meriaux: Analysis of the stress gradient effect in fretting-fatigue through nonlocal intensity factors, International Journal of Fatigue82 (2016), No. 3, pp. 18819810.1016/j.ijfatigue.2015.02.009Search in Google Scholar

14 B.Liu, G.He, X.Jiang, M.Zhu: Investigation of fretting fatigue behaviour under multiaxial non-proportional loading, Journal of Engineering Tribology225 (2011), No. 8, pp. 75476110.1177/1350650111403542Search in Google Scholar

15 X.Li, J. W.Yang, M. H.Li, Z. X.Zuo: An investigation on fretting fatigue mechanism under complex cyclic loading conditions, International Journal of Fatigue88 (2016), pp. 22723510.1016/j.ijfatigue.2016.03.030Search in Google Scholar

16 M.Skorupa, T.Machniewicz, A.Skorupa, A.Korbel: Effect of load transfer by friction on the fatigue behaviour of riveted lap joints, International Journal of Fatigue90 (2016), pp. 11110.1016/j.ijfatigue.2016.04.005Search in Google Scholar

17 C.Gandiolle, S.Fouvry, E.Charkaluk: Lifetime prediction methodology for variable fretting fatigue loading: Plasticity effect, International Journal of Fatigue92 (2016), pp. 53154710.1016/j.ijfatigue.2016.05.025Search in Google Scholar

Published Online: 2017-08-28
Published in Print: 2017-09-01

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Effect of contact pressure on multiaxial fretting fatigue behavior of Al-Zn-Mg alloy
  5. Effect of various initial concentrations of CTAB on the noncovalent modified graphene oxide (MGNO) structure and thermal stability
  6. Bauschinger effect at elevated temperatures in a 2024-T3 aluminum alloy for designing wind turbine components
  7. Effect of Ni interlayer on diffusion bonding of a W alloy and a Ta alloy
  8. Comparison of the welding behavior of P/M borated and I/M borated stainless steel
  9. Detection of interfacial debonding in epoxy resin-bonded lead-steel structure using laser ultrasonics
  10. Effects of deep cryo treatment of high speed steel on the turning process of a medium carbon steel
  11. Weldability of superalloys alloy 718 and ATI® 718Plus™ – A study performed by Varestraint testing
  12. Strength and mechanical response of C/C composite open-hole and bolted plates
  13. Pullout performance of modified threads in glass fiber reinforced plastic (GFRP) composites
  14. Physico-chemical characterization of slag waste from coal gasification syngas plants: Effect of the gasification temperature on slag waste as construction material
  15. Preparation, characterization and thermoelectric properties of a polyaniline matrix Ge0.94Pb0.01Bi0.05Te composite
  16. Surface roughness analysis of greater cutting depths during hard turning
  17. Properties of fine soils contaminated with gas oil
  18. Numerical calculation and stress analysis of crack evolution in coal with a central hole under nonuniform load
Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.111062/pdf
Scroll to top button