Startseite Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Experimental failure testing and repair of internal pressurized composite pipes using different fracture models

  • İsmail Yasin Sülü und Apdulmutalip Şahinaslan
Veröffentlicht/Copyright: 30. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The failure testing and repair of composite pipes using different fracture models and different orientation angles under internal pressure was experimentally investigated. Patches with different dimensions were made from composite material for repair. Fracture models on composite pipes were created for three different angles. These are horizontal crack, vertical crack and inclined crack. Adhesive layers created by using DP 410 for repair and failure testing of the composite pipes with different fractures were carried out. Failure loads were obtained from experimental tests. The shear extension coupling of composite pipe and patch was considered because the lay-up angles with + θ and – θ layers were in different radii. Effects of orientation angles and types of fracture models were investigated regarding interaction between the pipe, the adhesive and the patch. The most effective patch width and orientation angles were determined.

Kurzfassung

Für den vorliegenden Beitrag wurden das Versagen und die Reparaturmöglichkeiten von Kompositrohren unter Innendruck mittels verschiedener Bruchmodelle und verschiedener Orientierungswinkel experimentell untersucht. Hierzu wurden Reparaturflicken mit verschiedenen Dimensionen aus Kompositmaterial angefertigt. Die Bruchmodelle für die Kompositrohre wurden für drei verschiedene Winkel angesetzt. Es wurden Adhäsionslagen unter Verwendung von DP 410 für die Reparatur und die Untersuchung des Versagens der Kompositrohre unter verschiedenen Brüchen hergestellt. Mittels experimenteller Untersuchungen wurden die Versagenslasten bestimmt. Die Kompositrohre und die Flicken hatten Winkel von + θ und – θ für die Lagen unter verschiedenen Radien. Es wurden die Auswirkungen der Orientierungswinkel und die Typen der Bruchmodelle im Zusammenspiel zwischen Rohr, Adhäsionsmaterial und Flicken untersucht. Hierbei wurden die effektivste Flickenbreite und der Orientierungswinkel bestimmt.


*Correspondence Address, Assistant Prof. Dr. İsmail Yasin Sülü, Department of Mechanical Engineering, Inonu University, 44280 Malatya, Turkey, E-mail:

İsmail Yasin Sülü, born in 1984, graduated with a BSc degree from the Mechanical Engineering Department, Engineering Faculty, İnönü University, Malatya, Turkey in 2006. He finished his MSc in the Mechanical Engineering Department, Institute of Natural and Applied Sciences, Çukurova University, Adana, Turkey. Then, he received his PhD from the Mechanical Engineering Department, Institute of Natural Sciences, İnönü University. Currently, he is Assistant Professor in the Mechanical Engineering Department, Engineering Faculty, İnönü University, Malatya, Turkey. His study areas are mechanics of composites, solid mechanics and mechanics of adhesives.

Apdulmutalip Şahinaslan, born in 1968, graduated from the Mechanical Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Turkey. He finished his MSc degree at the same university and received his PhD at the Energy Systems Engineering Department, Institute of Natural Sciences, Gazi University, Ankara, Turkey. Currently, he is Assistant Professor in the Mechanical Engineering Department, Engineering Faculty, İnönü University, Malatya, Turkey. His study areas are nuclear energy, computer machine design and machine elements.


References

1 M.Xia, H.Takayanagi, K.Kemmochi: Analysis of multi-layered filament-wound composite pipes under internal pressure, Composite Structures53 (2001), pp. 483491 DOI: 10.1016/S0263-8223(01)00061-7Suche in Google Scholar

2 M.Martens, F.Ellyin: Biaxial monotonic behavior of a multidirectional glass fiber epoxy pipe, Composites A31 (2000), pp. 10011014 DOI: 10.1016/S1359-835X(00)00041-5Suche in Google Scholar

3 M. S.Abdul Majid, T. A.Assaleh, A. G.Gibson, J. M.Hale, A.Fahrer, C. A. P.Rookus, M.Hekman: Ultimate elastic wall stress (UEWS) test of glass fibre reinforced epoxy (GRE) pipe, Composites A42 (2011), pp. 15001508 DOI: 10.1016/j.compositesa.2011.07.001Suche in Google Scholar

4 W.Shuichi, K.Satoshi, I.Takayuki, M.Takayuki: Evaluation of burst strength of FW-FRP composite pipes after impact using pitch-based low modulus carbon fiber, Composites A37 (2006), pp. 20022010 DOI: 10.1016/j.compositesa.2005.12.010Suche in Google Scholar

5 O.Aziz, S.Onur, D.Tolga, T.Necmettin: Burst failure load of composite pressure vessels, Composite Structures89 (2009), pp. 159166 DOI: 10.1016/j.compstruct.2008.06.021Suche in Google Scholar

6 K.Cevdet, M.Onur: Uniaxial fatigue behavior of filament-wound glass-fiber/epoxy composite tubes, Composites Science and Technology61 (2001), pp. 18331840 DOI: 10.1016/S0266-3538(01)00084-7Suche in Google Scholar

7 J.Rousseau, D.Perreux, N.Verdieáre: The influence of winding patterns on the damage behaviour of filament-wound pipes, Composites Science and Technology59 (1999), pp. 14391449 DOI: 10.1016/S0266-3538(98)00184-5Suche in Google Scholar

8 D. P.Luke, S. W.Siang, K. H.Leong, W. D.Hillier, T. W.Eccleshall, A. Y. L.Leong: Development of a fibre reinforced polymer composite clamp for metallic pipeline repairs, Materials and Design70 (2015), pp. 6880 DOI: 10.1016/j.matdes.2014.12.059Suche in Google Scholar

9 A.Shouman, F.Taheri: Compressive strain limits of composite repaired pipelines under combined loading states, Composite Structures93 (2011), pp. 15381548 DOI: 10.1016/j.compstruct.2010.12.001Suche in Google Scholar

10 T. S.Mally, A. L.Johnston, M.Chann, R. H.Walker, M. W.Keller: Performance of a carbon-fiber/epoxy composite for the underwater repair of pressure equipment, Composite Structures100 (2013), pp. 542547 DOI: 10.1016/j.compstruct.2012.12.015Suche in Google Scholar

11 J. M.Duell, J. M.Wilson, M. R.Kessler: Analysis of a carbon composite overwrap pipeline repair system, International Journal of Pressure Vessels and Piping85 (2008), pp. 782788 DOI: 10.1016/j.ijpvp.2008.08.001Suche in Google Scholar

12 N.Saeed, H.Ronagh, A.Virk: Composite repair of pipelines, considering the effect of live pressure-analytical and numerical models with respect to ISO/TS 24817 and ASME PCC-2, Composites B58 (2014), pp. 605610 DOI: 10.1016/j.compositesb.2013.10.035Suche in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110918/pdf?lang=de
Button zum nach oben scrollen