Startseite Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Al addition on microstructure and properties of an Fe-B-Al alloy

  • Jiang Ju , Hanguang Fu und Yongping Lei
Veröffentlicht/Copyright: 30. August 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The Fe-B-Al alloy containing 0 to 10.0 wt.-% Al was melted in a vacuum induction furnace. Effects of the aluminum addition on the microstructure and properties of Fe-B-Al alloys were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), hardness testing and MMG-500 type pin-on-disk high temperature vacuum wear testing. The results showed that the as-casted microstructure of the aluminum-free Fe-B alloy consisted of α-Fe, Fe2(B,C), and Fe23(B,C)6 type borocarbides. However, the as-casted microstructure of the Fe-B-Al alloy consists of a Fe3Al type intermetallic compound when the aluminum content is more than 6.0 wt.-%. Compared with the aluminum-free Fe-B alloy, parts of the borocarbide networks are broken, and the fracture tendency became more obvious with the increase of the aluminum content. Boron is mainly distributed over the borocarbide. Aluminum is mainly distributed over the matrix and Fe3Al type intermetallic compound. Compared with the aluminum-free Fe-B alloy, the addition of a small amount of aluminum reduces slightly the hardness. The hardness gradually increased with the further increasing of the aluminum content. The hardness reached 48.1 HRC when aluminum content was 10.0 wt.-%. The high temperature wear resistance of Fe-B-Al alloy gradually increased with the increase of the aluminum content. When the aluminum content reached 10.0 wt.-%, the high temperature wear resistance of the alloy was the best.

Kurzfassung

Eine Fe-B-Al-Legierung mit 0 bis 10 wt.-% Al wurde in einem Vakuuminduktionsofen verschmolzen. Danach wurden die Auswirkungen der Aluminiumzugabe auf die Mikrostruktur und die Eigenschaften der Legierung mittels Lichtmikroskopie, Rasterelektronenmikroskopie, Röntgendiffraktometrie, EDS, Härtetests und einem Stift-Scheibe-Reibtest der Typs MMG-500 bei hohen Temperaturen und im Vakuum untersucht. Die Ergebnisse zeigen, dass die Mikrostruktur der Aluminium-freien Legierung im Gusszustand aus α-Fe sowie Borcarbiden des Typs Fe2(B,C) und Fe23(B,C)6 bestand. Dem gegenüber bestand die Mikrostruktur im Gusszustand der Fe-B-Al-Legierung aus einer intermetallischen Verbindung des Typs Fe3Al, wenn der Alumniumgehalt mehr als 6 wt.-% betrug. Im Vergleich mit der Aluminium-freien Fe-B-Legierung waren Teile des Borcarbid-Netzwerkes gebrochen und die Bruchtendenz war mit Zunahme des Aluminiumgehalts stärker ausgeprägt. Bor ist hauptsächlich über die Borcarbide verteilt. Aluminium ist hauptsächlich in der Matrix und den intermetallischen Verbindungen des Typs Fe3Al verteilt. Im Vergleich mit der Aluminium-freien Legierung reduziert eine Aluminium-Zugabe in kleinen Mengen geringfügig die Härte. Die Härte nimmt graduell zu mit einer weiteren Aluminium-Zugabe. Die Härte erreicht einen Wert von 48.1 HRC, wenn der Aluminium-Gehalt 10 wt.-% beträgt. Der Hochtemperatur-Verschleißwiderstand der Fe-B-Al-Legierung nimmt graduell mit steigendem Aluminiumgehalt zu. Bei einem Alumniumgehalt von 10 wt.-% war der Hochtemperatur-Verschleißwiderstand am besten.


*Correspondence Address, Dr. Hanguang Fu, School of Materials Science and Engineering, Beijing University of Technology, Number 100, Pingle Garden, Chaoyang District, Beijing 100124, P. R. China, E-mail:

Jiang Ju, born in 1990, is a master candidate at Beijing University of Technology, China. He obtained his Bachelor degree at the School of Construction Machinery of Shandong Jiaotong University, China in 2013. His research interests mainly focus on wear-resistant alloy materials.

Dr. Hanguang Fu, born in 1964, is a researcher at Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University, China in 2004. His research interests mainly focus on solidification control. By now, he has published over 100 technical papers and holds more than 80 invention patents in China.

Prof. Dr. Yongping Lei, born in 1957, is Professor at Beijing University of Technology, China. He obtained his PhD at the School of Materials Science and Engineering at Xi'an Jiaotong University, China in 1994. His research interests mainly focus on the development of lead-free solder paste, the reliability of solder joint and welding. By now, he has published over 100 technical papers and holds more than 50 invention patents in China.


References

1 X.Chen, Y. X.Li, H. M.Zhang: Microstructure and mechanical properties of high boron white cast iron with about 4 wt.-% chromium, Journal of Materials Science46 (2011), No. 4, pp. 957963 DOI: 10.1007/s10853-010-4840-6Suche in Google Scholar

2 N.Yüksel, S.Sahin: Wear behavior-hardness-microstructure relation of Fe-Cr-C and Fe-Cr-C-B based hardfacing alloys, Materials and Design58 (2014), pp. 491498 DOI: 10.1016/j.matdes.2014.02.032Suche in Google Scholar

3 H.Zhang, H.Fu, Y.Jiang, H.Guo, Y.Lei, R.Zhou, Q.Cen: Effect of boron concentration on the solidification, microstructure and properties of Fe-Cr-B alloy, Materials Science and Engineering Technology42 (2011), pp. 765770 DOI: 10.1002/mawe.201100753Suche in Google Scholar

4 X. H.Zhi, J. Z.Liu, J. D.Xing, S. Q.Ma: Effect of cerium modification on microstructure and properties of hypereutectic high chromium cast iron, Mater. Sci. Eng. A603 (2014), pp. 98103 DOI: 10.1016/j.msea.2014.02.080Suche in Google Scholar

5 H. G.Fu, Q.Xiao, J. C.Kuang, Z. Q.Jiang, J. D.Xing: Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe-B cast steel, Materials Science and Engineering466 (2007), No. 1–2, pp. 160165 DOI: 10.1016/j.msea.2007.02.032Suche in Google Scholar

6 Z. W.Wu, P.Cheng, H. G.Fu: Effect of quenching temperature on microstructure and properties of Fe-Cr-B-Al alloy, Transactions of Materials and Heat Treatment35 (2014), No. 5, pp. 115118Suche in Google Scholar

7 P. Q.La, S. G.Liu: Effect of aluminum on microstructure and mechanical properties of 310S steel, Materials Engineering35 (2009), No. 3, pp. 3640 DOI: 1009-6264(2014)35:3<73:GRCLDG>2.0.TX;2-ZSuche in Google Scholar

8 D. L.Joslin, D. S.Easton, C. T.Liu, S. A.David: Processing of Fe3Al and FeAl alloys by reaction synthesis, Intermetallic3 (1995), No. 6, pp. 467481 DOI: 10.1016/0966-9795(95)00006-KSuche in Google Scholar

9 M. H.Enayati, M.Salehi: Formation mechanism of Fe3Al and FeAl intermetallic compounds during mechanical alloying, Journal of Materials Science40 (2005), No. 15, pp. 39333938 DOI: 10.1007/s10853-005-0718-4Suche in Google Scholar

10 Z.Yu, H. G.Fu, Y. H.Jiang, R.Zhou, Y. P.Lei, Q. H.Cen, H. X.Guo: Effect of aluminum content on microstructure and properties of Fe-Cr-B-Al alloy, Materials Science and Engineering43 (2012), No. 12, pp. 10801085 DOI: 10.1002/mawe.201200058Suche in Google Scholar

11 C. G.Bao, E. N.Wang, Y. M.Gao, J. D.Xing: Effect of the volume fraction of particles on elevated temperature wear resistance of Al2O3/steel composites, Journal of Iron and Steel Research International12 (2005), No. 2, pp. 6063Suche in Google Scholar

12 U.Sen, S.Sen, F.Yilmaz: Structural characterization of boride layer on boronized ductile irons, Surface and Coatings Technology176 (2004), No. 2, pp. 222228 DOI: 10.1016/S0257-8972(03)00731-XSuche in Google Scholar

13 W. J.Shi, H. G.Fu, Z. Q.Jiang, L. M.Huang, J. D.Xing: Effect of heat treatment on microstructure and property of high boron and low carbon cast steel, Iron Steel Vanadium Titanium28 (2007), pp. 5761Suche in Google Scholar

14 Z. H.Chen, C. J.Xu, G.Chen, H. G.Yan, J. T.Xia: Preparation and thermal wear properties of modified resin-matrix pantograph contact strip, The Chinese Journal of Nonferrous Metals17 (2007), No. 11, pp. 17851791 DOI: 1004-0609(2007)17:11Suche in Google Scholar

15 X. D.Song, H. M.Liu, H. G.Fu, J. D.Xing: Effect of boron concentration on microstructure and properties of high-boron low-carbon ferro-matrix alloy, Foundry (57) 2008, No. 5, pp. 498501 DOI: 1001-4977(2008)57:5Suche in Google Scholar

16 H. G.Fu: A study on the microstructure and properties of cast Fe-B-C alloy, Foundry54 (2005), No. 9, pp. 859863 DOI: 1001-4977(2005)54:9Suche in Google Scholar

17 J. J.Zhang, Y. M.Gao, J. D.Xing, S. Q.Ma, D. W.Yi, L.Liu, J. B.Yan: Effects of plastic deformation and heat treatment on microstructure and properties of high boron cast steel, Journal of Material Engineering and Performance20 (2011), No. 9, pp. 16581664 DOI: 10.1007/s11665-010-9809-8Suche in Google Scholar

18 P. F.Shi, AndersEngstrom, LarsHoglund, Q.Chen, B.Sundman, J.Agren, M.Hillert: Computational thermodynamics and kinetics in materials modelling and simulations, Journal of Iron and Steel Research International14 (2007), pp. 210215 DOI: 10.1016/S1006-706X(08)60081-3Suche in Google Scholar

19 Y. J.Li, Q. C.Jiang, Z. M.He, Y. G.Zhao, L. H.Ge: Influence of Al on the solidification procedure of M2 high speed steel, Chinese Journal of Materials Research11 (1997), pp. 216218Suche in Google Scholar

20 H. G.Fu, Z. Q.Jiang: A study of abrasion resistant cast Fe-B-C alloy, Acta Metallurgica Sinica42 (2006), No. 5, pp. 545548 DOI: 0412-1961(2006)05-0545-04Suche in Google Scholar

21 Y. R.Zhao,J. W.Li,G. S.Zhang, S. Z.Wei: Microstructure and properties of hypereutectic high carbon Fe-B-C steel, Foundry60 (2011), No. 6, pp. 583586 DOI: 1001-4977(2011)60:6<583:GGJGTF>2.0.TX;2-JSuche in Google Scholar

22 U.Sen, S.Sen, F.Yilmaz, S.Koksal: Fracture toughness of borides formed on boronized ductile iron, Materials and Design26 (2005), No. 2, pp. 175179 DOI: 10.1016/j.matdes.2004.05.015Suche in Google Scholar

23 G. Z.Zhang, H. S.Hu, G. L.Jia, Y. Y.Gao: The application of boron in cast iron, Modern Cast Iron4 (1993), pp. 3438Suche in Google Scholar

24 H.Zhang, H.Fu, Y.Jiang, H.Guo, Y.Lei, R.Zhou, Q.Cen: Effect of boron concentration on the solidification microstructure and properties of Fe-Cr-B alloy, Materials Science and Engineering42 (2011), No. 8, pp. 765770 DOI: 10.1002/mawe.201100753Suche in Google Scholar

25 H.Fu, Q.Zhou, Z.Jiang: A study of the quenching structures of Fe-B-C alloy, Materials Science and Engineering Technology38 (2007), No. 4, pp. 299302 DOI: 10.1002/mawe.200600129Suche in Google Scholar

26 X. M.Wang, X. L.He: Effect of boron addition on structure and properties of low carbon bainitic steels, ISIJ International42 (2002), pp. S38S46 DOI: 10.2355/isijinternational.42.Suppl_S38Suche in Google Scholar

27 H. G.Fu, Z. H.Li, Z. Q.Jiang, J. D.Xing: Solidification structure in a cast B-bearing stainless steel, Materials Letters61 (2007), No. 23–24, pp. 45044507 DOI: 10.1016/j.matlet.2007.02.037Suche in Google Scholar

28 J.Gu, H. B.Zhang, H. G.Fu, Y. P.Lei: Effect of boron content on the structure and property of Fe-B-C alloy, Foundry Technology32 (2011), No. 10, pp. 13761379 DOI: 1000-8363(2011)10-1376-04Suche in Google Scholar

29 Z. Z.Hu: Study of the microstructure of iron-aluminum intermetallic compound, Harbin Institute of Technology7 (2010), pp. 166Suche in Google Scholar

30 J.Li, Y. X.Cai, X. J.Lin, K.Yu, Y. F.Pan: Effect of Al contents on wear properties of Fe3Al intermetallics, Heat Treatment of Metals32 (2007), No. 2, pp. 2326 DOI: 0254-6051(2007)02-0023-04Suche in Google Scholar

31 F. Y.Lin: Wear Theory and Anti-Wear Technology, Science Press, Beijing, P. R. China (1993)Suche in Google Scholar

32 K. R.Mecklenburg: The effect of wear on the compressive stress in the sphere on plane configuration, Tribology Transactions17 (1974), No. 2, pp. 149157 DOI: 10.1080/05698197408981451Suche in Google Scholar

33 S.Hesheng, Z.Qiong: Abrasive Wear of Metal and Wear-Resistant Materials, Machinery Industry Press, Beijing, P. R. China (1998)Suche in Google Scholar

34 L. C.Fu, J.Yang, Q. L.Bi, W. M.Liu: Improved wear resistance of dendrite composite eutectic Fe-B alloy, Friction & Wear133 (2011), No. 4, pp. 15 DOI: 10.1115/1.4005067Suche in Google Scholar

Published Online: 2016-08-30
Published in Print: 2016-09-07

© 2016, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Application of micro-magnetic testing systems for non-destructive analysis of wear progress in case-hardened 16MnCr5 gear wheels
  5. Weldability of duplex stainless steels with and without Cu/Ni interlayer using plasma arc welding
  6. TIG deposition of Ti on steel substrates using Cu as interlayer
  7. Examinations of casting cracks in a high alloy steel valve
  8. Analyzing the diffusion weldability of copper and porcelain
  9. Torsional behavior of a friction welded martensitic stainless steel
  10. Effects of different wire chemical compositions on the mechanical and microstructural characteristics of copper brazing joints
  11. Effect of Al addition on microstructure and properties of an Fe-B-Al alloy
  12. Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor
  13. Strain measurement in concrete using embedded carbon roving-based sensors
  14. Wear behavior of multilayer coated carbide tools in finish dry hard turning
  15. Characteristics of austenitic stainless steel T-joints welded using the DMAG process with solid wire
  16. Application of the Taguchi method for surface roughness predictions in the turning process
  17. Experimental failure testing and repair of internal pressurized composite pipes using different fracture models
  18. Investigation of material removal rate (MRR) and wire wear ratio (WWR) for alloy Ti6Al4 V exposed to heat treatment processing in WEDM and optimization of parameters using Grey relational analysis
Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110912/pdf?lang=de
Button zum nach oben scrollen