Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
-
G. Srinivasa Rao
, V. V. Subba Rao und S. R. Koteswara Rao
Abstract
In the present study, 8.1 mm thick AA 2219–T87 plates were joined by friction stir welding (FSW) process. Welds were characterized by using micro hardness survey, tensile testing, face bend, root bend tests, optical microscopy (OM), transmission electron microscopy (TEM) and salt fog test (ASTM B117) at different pH values and spraying times. Hardness survey across the joint revealed that weld nugget is the softest region and it is also found that tensile failure occurs in the nugget. Tensile testing of the transverse welded joints showed that high efficiency (> 75 %) joints could be produced. The friction stir welds subjected to the surface bend showed 1800 bend ductility, whereas in the critical root bend the cracks were initiated at a bend angle in the range of 30–400. Transmission electron micrographs obtained from various regions of the weld indicated that almost all strengthening precipitates dissolved in the nugget region while partial dissolution of precipitates occurred in the thermomechanically affected zone and coarsening occurred in heat affected zone. However, the losses in hardness in the nugget due to dissolution of precipitates and the negation of work hardening by recrystallization were compensated to a large extent by the strengthening due to the grain refinement in the nugget, which explains the high joint efficiencies exhibited by these welds. It was observed that the welds possessed much better corrosion resistance in basic and neutral solution than in acidic solution. It was found that corrosion attack was greater in the base material than in weld metal at all pH values and spraying times. It has been concluded that friction stir welding has a significant effect on mechanical and corrosion properties of the welds.
Kurzfassung
In der Studie wurden 8,1 mm dicke AA 2219-T87 Platten mittels Rührreibschweißen (FSW) verbunden. Die Schweißnähte wurden mit Hilfe Mikrohärtemessungen, Zugversuche, Oberflächenbiegetests und Wurzelbiegetests, optische Mikroskopie (OM), Transmissionselektronenmikroskopie (TEM) und Salznebeltest (ASTM B117) bei verschiedenen pH-Werten und Sprühzeiten charakterisiert. Härtemessungen der Verbindung zeigten, dass die Schweißlinse die weichste Region ist und das Versagen in der Schweißlinse auftritt. Die Zugprüfung der Querschweißverbindungen wiesen auf eine hohe Effizienz (> 75 %) hin. Die Rührreibschweißungen, die mit dem Oberflächenbiegetest geprüft wurden, zeigten eine Biegeduktilität von 180°, während in der kritischen Wurzelbiegung die Risse bei einem Biegewinkel von 30° bis 40° auftraten. TEM-Aufnahmen aus verschiedenen Bereichen der Schweißung stellten fest, dass nahezu alle festigkeitssteigernden Ausscheidungen im Bereich der Schweißlinse gelöst sind, während teilgelöste Ausscheidungen in der thermomechanisch beeinflussten Zone und Vergröberung in der WEZ auftraten. Jedoch werden die Härteverluste in der Schweißlinse aufgrund der Auflösung von Ausscheidungen und der Aufhebung der Kaltverfestigung durch Umkristallisation zu einem großen Teil durch Verfestigung durch Kornfeinung in der Schweißlinse kompensiert. Dies erklärt die hohe Verbindungseffizienz dieser Schweißungen. Es wurde beobachtet, dass die Schweißungen eine ausgezeichnete Korrosionsbeständigkeit in basischer und neutraler Lösung aufweist, dagegen eine niedrigere in saurer Lösung. Es wurde ermittelt, dass der Korrosionsangriff bei allen pH-Werten und Sprühzeiten im Grundmaterial größer als im Schweißgut ist. Es wurde daraus geschlossen, dass das Rührreibschweißen eine signifikante Wirkung auf die mechanischen und korrosiven Eigenschaften der Schweißverbindungen hat.
References
1 S. R. KoteswaraRao, G. MadhusudhanReddy, M.Kamaraj, K. PrasadRao: Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Material Science and Engineering A404 (2005), pp. 227–23410.1016/j.msea.2005.05.080Suche in Google Scholar
2 C.Huang, S.Kou: Partially melted zone in aluminum welds – Solute segregation and mechanical behavior, Welding Journal80 (2001), pp. 9s–17sSuche in Google Scholar
3 C.Huang, S.Kou: Partially melted zone in aluminum welds – Planar and cellular solidification, Welding Journal80 (2001), pp. 46s–53sSuche in Google Scholar
4 C.Huang, S.Kou: Liquation mechanism in multi component aluminum alloys during welding, Welding Journal81 (2002), pp. 211s–222sSuche in Google Scholar
5 J. G.Garland: Weld pool solidification control, British Welding Journal22 (1974, pp. 121–127Suche in Google Scholar
6 G. M.Reddy: Weld microstructure refinement in a 1441 grade Al-lithium alloy, J. Mater. Sci. (1997), 32, pp. 4117–412610.1023/A:1018662126268Suche in Google Scholar
7 H.Yamamoto, S.Harada, T.Ueyama, S.Ogawa, F.Matsuda, K.Nakata: Beneficial effects of low frequency pulsed MIG welding on grain refinement of weld metal and improvement of solidification cracking susceptibility of aluminium alloys, Welding International (1993), 7 (6), pp. 456–46110.1080/09507119309548425Suche in Google Scholar
8 G. D. JanakiRam, G. M.Reddy, S.Sundaresan: Effect of pulsed welding current on the solidification structure in Al-Li- Cu and Al-Zn-Mg alloy welds, Practical Metallography (2000), 37(5), pp. 276–288Suche in Google Scholar
9 W. M.Thomas, E. D.Nicholas, M. G.Murch, P.Tempelsmith, C. J.Dawes, GB Patent Application No. 9125978.8, December 1991, TWI Bull. (1995) 124Suche in Google Scholar
10 K. A. A.Hassan, P. B.Prangnell, A. F.Norman, D. A.Price, S. W.Williams: Effect of welding parameters on nugget zone microstructure and properties in high strength aluminium alloy friction stir welds, Sci. Technol. Weld. Joi.8 (2003), pp. 257–26810.1179/136217103225005480Suche in Google Scholar
11 J. Q.Su, T. W.Nelson, R.Mishra, M.Mahoney: Microstructural investigation friction stir welded 7050-T651 aluminium, Acta Mater.51 (2003), pp. 713–72910.1016/S1359-6454(02)00449-4Suche in Google Scholar
12 C. G.Rhodes, M. W.Mahoney, W. H.Bingel, R. A.Spurling, C. C.Bampton: Effects of friction stir welding on microstructure of 7075 aluminum, Scripta Mater.36 (1997), pp. 69–7510.1016/S1359-6462(96)00344-2Suche in Google Scholar
13 K. V.Jata, K. K.Sankaran, J. J.Ruschau: Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451, Metall. Mater. Trans. A31A (2000), pp. 2181–219210.1007/s11661-000-0136-9Suche in Google Scholar
14 G.Liu, L. E.Murr, C. S.Niou, J. C.McClure, F. R.Vega: Microstructural aspects of the friction-stir welding of 6061-T6 aluminum, Scripta Mater.37 (1997), pp. 355–36110.1016/S1359-6462(97)00062-6Suche in Google Scholar
15 Y. S.Sato, H.Kokawa, M.Enomoto, S.Jogan, T.Hashimoto: Precipitation sequence in friction stir weld of 6063 aluminum during aging, Metall. Mater. Trans. A30A (1999), pp. 3125–313010.1007/s11661-999-0223-5Suche in Google Scholar
16 Y. S.Sato, H.Kokawa, M.Enomoto, S.Jogan: Microtexture in the friction-stir weld of an aluminum alloy, Metall. Mater. Trans. A30A (1999), pp. 2429–243710.1007/s11661-999-0251-1Suche in Google Scholar
17 K. V.Jata, S. L.Semiatin: Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scripta Mater.43 (2000), pp. 743–74910.1016/S1359-6462(00)00480-2Suche in Google Scholar
18 S.Benavides, Y.Li, L. E.Murr, D.Brown, J. C.McClure: Low-temperature friction-stir welding of 2024 aluminum, Scripta Mater.41 (1999), pp. 809–81510.1016/S1359-6462(99)00226-2Suche in Google Scholar
19 M. W.Mahoney, C. G.Rhodes, J. G.Flintoff, R. A.Spurling, W. H.Bingel: Properties of friction-stir-welded 7075 T651 aluminum, Metall. Mater. Trans. A29A (1998), pp. 1955–196410.1007/s11661-998-0021-5Suche in Google Scholar
20 M.Peel, A.Steuwer, M.Preuss, P. J.Withers: Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater.51 (2003), pp. 4791–480110.1016/S1359-6454(03)00319-7Suche in Google Scholar
21 A. P.Reynolds, W. D.Lockwood, T. U.Seidel: Processing-property correlation in friction stir welds, Mater. Sci. Forum331–337 (2000), pp. 1719–1724Suche in Google Scholar
22 H. J.Liu, H.Fujii, M.Maeda, K.Nogi: Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, J. Mater. Process. Technol.142 (2003), pp. 692–69610.1016/S0924-0136(03)00660-5Suche in Google Scholar
23 B.Yang, J.Yan, M. A.Sutton, A. P.Reynolds: Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies, Mater. Sci. Eng. A Struct.364 (2004), pp. 55–6510.1016/S0921-5093(03)00532-XSuche in Google Scholar
24 K. A. A.Hassan, A. F.Norman, P. B.Prangnell: Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment, Mater. Sci. Forum396–402 (2002), pp. 1549–1554Suche in Google Scholar
25 K. A. A.Hassan, A. F.Norman, P. B.Prangnell: The effect of welding conditions on the microstructure and mechanical properties of the nugget zone in AA7010 alloy friction stir welds, 3rd International Symposium on Friction Stir Welding, Kobe, Japan (2001)Suche in Google Scholar
26 K. V.Jata: Friction stir welding of high strength aluminium alloys, Mater. Sci. Forum331–337 (2000), pp. 1701–171210.4028/www.scientific.net/MSF.331-337.1701Suche in Google Scholar
27 K. A. A.Hassan, A. F.Norman, D. A.Price, P. B.Prangnell: Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment, Acta Mater.51 (2003), pp. 1923–193610.1016/S1359-6454(02)00598-0Suche in Google Scholar
28 J. D.Robson, A.Sullivan, H. R.Shercliff, G.McShane: Microstructural evolution during friction stir welding of AA7449, 5th International Friction Stir Welding Symposium, Metz, France (2004)Suche in Google Scholar
29 J. B.Lumsden, M. W.Mahoney, G.Pollock, C. G.Rhodes: Intergranular Corrosion Following Friction Stir Welding of Aluminum Alloy 7075-T651, Corrosion55 (12) (1999), pp. 1127–113510.5006/1.3283950Suche in Google Scholar
30 Y.Li, L. E.Murr, J. C.McClure: Solid state flow visualization in the friction stir welding of 2024 Al to 6061Al, Mater. Sci. Eng. A271 (1999), pp. 213–22310.1016/S0921-5093(99)00204-XSuche in Google Scholar
31 S.Malarvizhi, V.Balasubramanian: Effect of welding processes on AA2219 aluminium alloy joint properties, Trans. Nonferrous Met. Soc. China21 (2011), pp. 962–97310.1016/S1003-6326(11)60808-XSuche in Google Scholar
32 K. S.Arora, S.Pandey, M.Schaper, R.Kumar: Microstructure evolution during friction stir welding of aluminum alloy AA2219, J. Mater. Sci. Technol. (2010), 26 (8), pp. 747–75310.1016/S1005-0302(10)60118-1Suche in Google Scholar
33 K.Elangovan, V.Balasubramanian: Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminum alloy, Journal of Materials Processing Technology200 (2008), pp. 163–17510.1016/j.jmatprotec.2007.09.019Suche in Google Scholar
34 F.Hannour, A.Davenport, M.Strangwood: Corrosion of friction stir welds in high strength aluminum alloys, 2nd International Symposium on Friction Stir Welding, Gothenburg, Sweden (2000)Suche in Google Scholar
35 R.Ambat, M.Jariyaboon, A. J.Davenport, S. W.Williams, D.Price, A.Wescott: Micro-electrochemical investigation of friction stir welds in aluminum aerospace alloy 2024, 15th International Corrosion Congress, Granada, Spain (2002)Suche in Google Scholar
36 J. B.Lumsden, M. W.Mahoney, C. G.Rhodes, G. A.Pollock: Corrosion Behavior of Friction-Stir-Welded AA7050-T7651, Corrosion59 (2003), pp. 212–21910.5006/1.3277553Suche in Google Scholar
37 J. B.Lumsden, M. W.Mahoney, G.Pollock, C. G.Rhodes: Intergranular Corrosion Following Friction Stir Welding of Aluminum Alloy 7075-T651, Corrosion55 (1999), pp. 1127–113510.5006/1.3283950Suche in Google Scholar
38 C. S.Paglia, M. C.Carroll, B. C.Pitts, A. P.Reynolds, R. G.Buchheit: Strength, Corrosion and Environmentally Assisted Cracking of a 7075-T6 Friction Stir Weld, Mater. Sci. Forum396–402 (2002), pp. 1677–1684Suche in Google Scholar
39 W.Hu, E. I.Meletis: Corrosion and environment assisted cracking behavior of friction stir welded Al 2195 and Al 2219 alloys, Mater. Sci. Forum331–337 (2000), pp. 1683–1688Suche in Google Scholar
40 G. S.Frankel, Z.Xia: Localized Corrosion and Stress Corrosion Cracking Resistance of. Friction Stir Welded Al Alloy 5454, Corrosion55 (1999), pp. 139–15010.5006/1.3283974Suche in Google Scholar
41 J.Corral, E. A.Trillo, Y.Li, L. E.Murr: Corrosion of friction-stir welded aluminum alloys 2024 and 2195, J. Mater. Sci. Lett.19 (2000), pp. 2117–212210.1023/A:1026710422951Suche in Google Scholar
42 F.Zucchi, G.Trabanelli, V.Grassi: Pitting and stress corrosion cracking resistance of friction stir welded AA 5083, Mater. Corros.52 (2001), pp. 853–85910.1002/1521-4176(200111)52:11<853::AIDMACO853>3.0.CO;2-1Suche in Google Scholar
43 G.Biallas, R.Braun, C. D.Donne, G.Staniek, W. A.Kaysser: Mechanical properties and corrosion behavior of friction stir welded 2024-T3, 1st International Symposium on Friction Stir Welding, Thousand Oaks, CA (1999)Suche in Google Scholar
44 A.Squillace, A. D.Fenzo, G.Giorleo, F.Bellucci: A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt joints, J. Mater. Process. Technol.152 (2004), pp. 97–10510.1016/j.jmatprotec.2004.03.022Suche in Google Scholar
45 S.Williams, R.Ambat, D.Price, M.Jariyaboon, A.Davenport, A.Wescott: Proc. of the International Symposium on Aluminium Surface Science and TechnologyMater. Sci. Forum426–432 (2003), pp. 2855–2860Suche in Google Scholar
46 B. J.Connolly, A. J.Davenport, M.Jariyaboon, C.Padovani, R.Ambat, S. W.Williams, D. A.Price, A.Wescott, C. J.Goodfellow, C. M.Lee: Localised corrosion of friction stir welds in aluminium alloys, 5th International Friction Stir Welding Symposium, Metz, France (2004)Suche in Google Scholar
47 Standard Practice for Operating Salt Spray Apparatus, ASTM B117, American Society for Testing of Materials, 2003Suche in Google Scholar
48 C. S.Paglia, R. G.Buchheit: The time–temperature–corrosion susceptibility in a 7050-T7451 friction stir weld, Mater. Sci. Eng. A (2008), 492, p. 25010.1016/j.msea.2008.03.039Suche in Google Scholar
49 K. S.Arora, S.Pandey, M.Schaper, R.Kumar: Microstructure Evolution during Friction Stir Welding of Aluminum Alloy AA2219, J. Mater. Sci. Technol.26 (8) (2010), pp. 747–75310.1016/S1005-0302(10)60118-1Suche in Google Scholar
50 K. A. A.Hassan, P. B.Prangnell, A. F.Norman, D. A.Price, S. W.Williams: Science and Technology of welding and joining 8 (4) (2003), pp. 257–268Suche in Google Scholar
51 Y.Sato, H.Kokawa, M.Enomoto, S.Jogan: Microstructural evolution of 6063 aluminum during friction stir welding, Metall. Mater. Trans. A30 (1999), pp. 2429–243710.1007/s11661-999-0251-1Suche in Google Scholar
52 K.Surekha, B. S.Murty, K. PrasadaRao: Effect of processing parameters on the corrosion behaviour of friction stir processed AA2219 aluminium alloy, Solid State Sciences11 (2009), pp. 907–91710.1016/j.solidstatesciences.2008.11.007Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Adhesive tensile testing of atmospheric plasma sprayed zinc coating on a 1.4301 substrate
- Fatigue strength of nodular cast iron with regard to heavy-wall applications
- Mechanical and corrosion properties of friction stir welded joints of Al-Cu alloy 2219-T87
- The effect of using heat treated ulexite and cashew in automotive friction materials
- Residual stress relaxation in welded large components
- Variation regulation of the acoustic emission energy parameter during the failure process of granite under uniaxial compression
- Iznik tiles: A new production technology and respective characterization
- Quality during milling of a glass fiber reinforced polymer composite
- Effect of abrasive water jet turning process parameters on surface roughness and material removal rate of AISI 1050 steel
- Influence of cutting parameters on the chip-tool interface temperature during the turning of Waspaloy
- Effects of the thixocasting injection velocity on tensile properties of an A357 Al alloy
- Solid mold investment casting – A replication process for open-cell foam metal production
- Design of an impact testing machine for polymer films by the free falling dart procedure
- Mechanical and electrical properties of Sb-Ga50Au10In40 alloys
- CFD simulation of particulate flow in a spiral concentrator