Home CFD simulation of particulate flow in a spiral concentrator
Article
Licensed
Unlicensed Requires Authentication

CFD simulation of particulate flow in a spiral concentrator

  • Gamal M. A. Mahran , Mohamed A. Doheim , Mohamed H. Abu-Ali and Ahmed F. Abdel
Published/Copyright: August 31, 2015
Become an author with De Gruyter Brill

Abstract

A spiral concentrator is a gravity concentration device. It was invented by Humphreys in 1941. Firstly, it was designed and developed based on experience and by extensive testing of prototypes and modifications. The main objective of the present study is the simulation of the particulate flow of more realistic solid concentrations (i. e., 15 wt.-% solids) in a spiral separator. This study is based on the Eulerian approach and renormalization group k-∊ turbulence modeling. The results focus on particulate flow characteristics such as velocity, distribution and concentration of particulates on the spiral trough. The predicted results were compared with the experimental results in case of LD9 coal spiral. Comparisons between numerical and measured data showed good agreement.

Kurzfassung

Bei einem Spiralkonzentrator handelt es sich um eine gravimetrische Konzentrationseinrichtung. Diese wurde durch Humphreys bereits 1941 erfunden. Sie wurde zunächst basierend auf Erfahrungen und durch Prüfen von Prototypen und deren Modifikation designed und entwickelt. Das Hauptziel der diesem Beitrag zugrunde liegenden Studie besteht darin, den Partikelfluss einer realistischeren Konzentration an Festbestandteilen, nämlich 15 wt.-%, in einem Spiralkonzentrator zu simulieren. Die Studie basiert auf einem Ansatz nach Euler und der Modellierung der Renormalisationsgruppe einer k-∊ Turbulenz. Die Ergebnisse konzentrieren sich auf die Partikelflusseigenschaften wie Geschwindigkeit sowie Konzentration und Verteilung der Partikel auf dem Schneckentrog. Die vorhergesagten Ergebnisse wurden mit experimentellen Ergebnissen für den Fall einer LD9 Kohlespirale verglichen. Der Vergleich zwischen den numerischen und experimentellen Werten zeigte eine gute Übereinstimmung.


§Correspondence Address, Assistant Prof. Dr. Gamal M. A. Mahran, Deanship of Graduate Studies, P.O. Box 80217, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia. E-mail:

Dr. Gamal M. A. Mahran, born 1968, is Assistant Professor in the Deanship of Graduate Studies, King Abdulaziz University, Jeddah, Saudi Arabia. He received his BSc from the Mining Engineering Dept., Assiut University, Egypt, in 1991 and his MSc from the Mining Engineering Dept., Al-Azhar University, Egypt, in 2000. In 2009, he accomplished his PhD at the Mining Engineering Dept., Assiut University, Egypt. His fields of interest are mineral processing, modeling and simulation as well as computational fluid mechanics.

Prof. Mohamed A. Doheim, born 1941, is Professor at the Mining Engineering Dept. Assiut University, Assiut, Egypt. He received his BSc from the Chemical Engineering Dept., Faculty of Engineering Alexandria University, Egypt, in 1962 and his PhD from Leeds University, UK, in 1968.

Prof. Mohamed H. Abu-Ali, born 1958, is Professor in the Mining Engineering Dept. Assiut University, Assiut, Egypt. He received his BSc and MSc from the Mining Engineering Dept., Assiut University, Egypt, in 1981 and 1987, respectively. In 1994, he achieved his PhD in the Mining Engineering Dept., Assiut University, Egypt. His fields of interest are unit operations in mineral processing, modeling and beneficiation of ores.

Prof. Ahmed F. Abdel Gawad, born 1968, is Professor for Computational Fluid Mechanics in the Mechanical Power Engineering Department, Faculty of Engineering, Zagazig University, Zagazig, Egypt. Currently, he is working at the Umm Al-Qura University, Makkah, Saudi Arabia. His fields of interest are computational fluid dynamics, turbulence modeling and simulation as well as computational fluid dynamics in mining applications.


References

1 B. K.Mishra, A.Tripathy: A preliminary study of particle separation in spiral concentrators using DEM, International Journal of Mineral Processing94 (2010), No. 3–4, pp. 19219510.1016/j.minpro.2009.12.005Search in Google Scholar

2 Y. M.Stokes, S. K.Wilson, B. R.Duffy: Thin-film flow in open helically-wound channels, Proc. of the 15th Australasian Fluid Mechanics Conference, University of Sydney, Sydney, Australia (2004), Paper AFMC00187Search in Google Scholar

3 C. R.Burch: Helicoid performance and fine cassiterite – Contributed remarks, Trans. Inst. Min. Metall.71 (1962), pp. 406415Search in Google Scholar

4 J. W.Wang, J. R. G.Andrews: Numerical simulations of liquid flow on spiral concentrators, J. Minerals Engineering7 (1994), No. 11, pp. 1363138510.1016/0892-6875(94)00076-XSearch in Google Scholar

5 T.Jancar, C. A. J.Fletcher, P. N.Holtham, J. A.Reizes: Computational and experimental investigation of spiral separator hydrodynamics, Proc. of the 19th Int. Mineral Processing Congress, San Francisco, USA (1995), pp. 147151Search in Google Scholar

6 B. W.Matthews, P.Holtham, C. A. J.Fletcher, K.Golab, A. C.Partridge: Computational and experimental investigation of spiral concentrator flows, Proc. of Coal 1998: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, Australia (1998), pp. 415421Search in Google Scholar

7 B. W.Matthews, C. A. J.Fletcher, A. C.Partridge: Computational simulation of fluid and dilute particulate flows on spiral concentrators, Applied Mathematical Modelling22 (1998), No. 12, pp. 96597910.1016/S0307-904X(98)10030-6Search in Google Scholar

8 B. W.Matthews, C. A. J.Fletcher, A. C.Partridge, S.Vasquez: Computations of curved free surface water flow on spiral concentrators, J. Hydraulic Engineering125 (1999), No. 11, pp. 112611310.1061/(ASCE)0733-9429(1999)125:11(1126)Search in Google Scholar

9 M. A.Doheim, A. F. AbdelGawad, G. M. A.Mahran, M. H.Abu-Ali, A. M.Rizk: Numerical simulation of particulate flow in spiral separators: Part I – Low solids concentration (0.3 and 3 % solids), Applied Mathematical Modeling37 (2013), No. 1–2, pp. 19821510.1016/j.apm.2012.02.022Search in Google Scholar

10 A. B.Holland-Batt, P. N.Holtham: Particle and fluid motion on spiral separators, J. Minerals Engineering4 (1991), No. 3–4, pp. 45748210.1016/0892-6875(91)90147-NSearch in Google Scholar

11 P. N.Holtham: Experimental Validation of a Fundamental Model of Coal Spirals, Report in the Australian Coal Association Research Program (ACARP), Project No. C4046, ACARP, Australia (1998) http://www.acarp.com.au/abstracts.aspx?repId=C4046Search in Google Scholar

12 P. N.Holtham: Particle transport in gravity concentrators and the Bagnold effect, Minerals Engineering5 (1992), No. 2, pp. 20522110.1016/0892-6875(92)90043-9Search in Google Scholar

13 V.Yakhot, S. A.Orszag: Renormalization group analysis of turbulence I – Basic theory, Journal of Scientific Computing1 (1986), No. 1, pp. 15110.1007/BF01061452Search in Google Scholar

14 Fluent 6.3.26 User's Guide: www.fluentusers.com, Fluent Inc., USA (2006)Search in Google Scholar

Published Online: 2015-08-31
Published in Print: 2015-09-01

© 2015, Carl Hanser Verlag, München

Downloaded on 9.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110774/html?lang=en
Scroll to top button