Startseite Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process

  • Ömer Güler
Veröffentlicht/Copyright: 28. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, carbon nanotubes at 0.05–1 wt-% ratios reinforced pure copper powder. Carbon nanotubes (CNT) were used to reinforce the copper matrix, these materials were synthesized under laboratory conditions. Ultrasonic processes and ball-milling method were used to provide a homogenous dispersion during production of the Cu-CNT composite. The Cu-CNT composite powder was produced as bulk material and then, the thermal conductivity as well as the microhardness of the composite were measured. As a particular result, it turned out that the thermal conductivity and the hardness of the composite increased up to a specific ratio of the CNT reinforcement, while the reinforcement ratio exceeding this critical level provided an adverse effect.

Kurzfassung

In der diesem Beitrag zugrundeliegenden Studie wurde reines Kupferpulver mit 0,05–1 % Kohlenstoff-Nanoröhrchen (CNT) verstärkt. Die Kohlenstoff-Nanoröhrchen wurden verwendet, um die Kupfermatrix zu verstärken, dabei wurden die entsprechenden Materialien unter Laborbedingungen synthetisiert. Es wurden Ultraschallprozesse und das Kugelmahlverfahren angewendet, um eine homogene Dispersion während der Produktion des Cu-CNT Kompositwerkstoffs zu erreichen. Das Cu-CNT Pulver wurde als Grundmaterial hergestellt und anschließend wurde die thermische Leitfähigkeit und Mikrohärte des Kompositwerkstoffs gemessen. Als ein besonderes Ergebnis stellte sich heraus, dass die thermische Leitfähigkeit und die Härte des Materials bis zu einem bestimmten Verhältnis an CNT-Verstärkung ansteigen, wobei ein Überschreiten des Verhältnisses den gegenteiligen Effekt erzeugte.


*Correspondence Address Dr. Ömer Güler Department of Metallurgy and Materials Engineering Fırat University Elazığ 23119, Turkey

Dr. Ömer Güler, born in Turkey in 1982, worked as research assistant at Fırat University, Turkey in Metalurgical and Material Engineering Department from 2004 to 2012 and worked there as Asst. Prof for one year. The subject of his doctoral thesis is dealing with carbon nanotubes synthesis via ball milling process. His research are carbon nanotube synthesis by CVD method, CNT-reinforced composites and advanced materials.


References

1 S.Iijima: Helical microtubules of graphitic carbon, Nature354 (1991), pp. 565810.1038/354056a0Suche in Google Scholar

2 W. W.Adams, B.Akdim, X.Duan, R.Pachter: Comparative theoretical study of single-wall carbon and boron-nitride nanotubes, Phys. Rev. B67 (2003), pp. 245404dx.doi.org/10.1103/PhysRevB.67.245404Suche in Google Scholar

3 P. M.Ajayan, O. Z.Zhou: Applications of Carbon Nanotubes, Carbon Nanotubes 80, Springer (2001), pp. 39142510.1007/3-540-39947-X_14Suche in Google Scholar

4 R. B.Rakhi, K.Sethupathi, S.Ramaprabhu: Synthesis and hydrogen storage properties of carbon nanotubes, Int. J. Hydrogen Energy33 (2008), pp. 38138610.1016/j.ijhydene.2007.07.037Suche in Google Scholar

5 P. J. F.Harris: Carbon nanotube composites, Int. Mater. Rev.49 (2004), No. 1, pp. 3143Suche in Google Scholar

6 K. T.Kim, S. I.Cha, S. H.Hong: Microstructures and tensile behaviour of carbon nanotube reinforced Cu matrix nanocomposites, Materials Science and Eng. A430 (2006), pp. 273310.1016/j.msea.2006.04.085Suche in Google Scholar

7 R.Haggenmueller, H. H.Gommans, A. G.Rinzler, J. E.Fischer: Aligned single-wall carbon nanotubes in composites by melt processing methods, Chem. Phys. Lett.330 (2000), pp. 21922510.1016/S0009-2614(00)01013-7Suche in Google Scholar

8 C. A.Cooper, D.Ravich, D.Lips, J.Mayer, H. D.Wagner: Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix, Compos. Sci. Technol.62 (2002), pp. 1105111210.1016/S0266-3538(02)00056-8Suche in Google Scholar

9 A.Allaoui, S.Bai, H. M.Cheng, J. B.Bai: Mechanical and electrical properties of a MWNT/epoxy composite, Compos. Sci. Technol.62 (2002), pp. 1993199810.1016/S0266-3538(02)00129-XSuche in Google Scholar

10 K. T.Lau, S. Q.Shi, H. M.Cheng: Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures, Compos. Sci. Technol.63 (2003), pp. 1161116410.1016/S0266-3538(03)00038-1Suche in Google Scholar

11 S. R.Dong, J. P.Tu, X. B.Zhang: An investigation of the sliding wear behaviour of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A313 (2001), pp. 838710.1016/S0921-5093(01)00963-7Suche in Google Scholar

12 T.Kuzumaki, K.Miyazawa, H.Ichinose, K.Ito: Processing of Carbon Nanotube Reinforced Aluminum Composite, J. Mater. Res.13 (1998), pp. 2445244910.1557/JMR.1998.0340Suche in Google Scholar

13 C. L.Xu, B. Q.Wei, R. Z.Ma, J.Liang, X. K.Ma, D. H.Wu: Fabrication of aluminum–carbon nanotube composites and their electrical properties, Carbon37 (1999), pp. 85585810.1016/S0008-6223(98)00285-1Suche in Google Scholar

14 L. Y.Wang, J. P.Tu, W. X.Chen, Y. C.Wang, X. K.Liu, C.Olk, D. H.Cheng, X. B.Zhang: Friction and wear behaviour of electroless Ni-based CNT composite coatings, Wear254 (2003), pp. 1289129310.1016/S0043-1648(03)00171-6Suche in Google Scholar

15 T.Kuzumaki, O.Ujiie, H.Ichinose, K.Ito: Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite, Adv. Eng. Mater.2 (2000), pp. 41641810.1002/1527-2648(200007)Suche in Google Scholar

16 K. T.Lau, D.Hui: The revolutionary creation of advanced materials: Carbon nanotube composites, Composites B Eng.33 (2002), pp. 26327710.1016/S1359-8368(02)00012-4Suche in Google Scholar

17 K. T.Lau, D.Hui: Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon40 (2002), pp. 1597161710.1016/S0008-6223(02)00157-4Suche in Google Scholar

18 H. D.Wagner: Nanotube–polymer adhesion: A mechanics approach, Chem. Phys. Lett.361 (2002), pp. 576110.1016/S0009-2614(02)00948-XSuche in Google Scholar

19 F. T.Fisher, R. D.Bradshaw, L. C.Brinson: Fiber waviness in nanotube-reinforced polymer composites I: Modulus predictions using effective nanotube properties, Compos. Sci. Technol.63 (2003), pp. 1689170310.1016/S0266-3538(03)00069-1Suche in Google Scholar

20 S. J. V.Frankland, V. M.Harik, G. M.Odegard, D. W.Brenner, T. S.Gates: The stress–strain behaviour of polymer–nanotube composites from molecular dynamics simulation, Compos. Sci. Technol.63 (2003), pp. 1655166110.1016/S0266-3538(03)00059-9Suche in Google Scholar

21 Y.Feng, H. L.Yuan, M.Zhang: Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes, Mater. Charact.55 (2005), pp. 21121810.1016/j.matchar.2005.05.003Suche in Google Scholar

22 K.Chu, H.Guo, C.Jia, F.Ying, X.Zhang: Thermal properties of carbon nanotube – copper composites for thermal management applications, Nanoscale Res. Lett.5 (2010), pp. 86887410.1007/s11671-010-9577-2Suche in Google Scholar PubMed PubMed Central

23 S.Yamanaka, R.Gonda, A.Kawasaki, H.Sakamoto, Y.Mekuchi, M.Kuno, T.Tsukada: Fabrication and thermal properties of carbon nanotube / nickel composite by spark plasma sintering method, Mater. Trans.48 (2007), pp. 2506251210.2320/matertrans.MRA2007084Suche in Google Scholar

24 S.Cho, K.Kikuchi, T.Miyazaki, K.Takagi: Multi-walled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Materialia63 (2010), pp. 37537810.1016/j.scriptamat.2010.04.024Suche in Google Scholar

25 K.Chu, C.Jia, L.Jiang, W.Li: Improvement of interface and mechanical properties in carbon nanotube-reinforced Cu–Cr matrix composites, Materials and Design45 (2013), pp. 40741110.1016/j.matdes.2012.09.027Suche in Google Scholar

26 H.Li, A.Misra, Y.Zhu, Z.Horita, C. C.Koch, T. G.Holesinger: Processing and characterization of nanostructured Cu-carbon nanotube composites, Materials Science and Engineering A523 (2009), pp. 606410.1016/j.msea.2009.05.031Suche in Google Scholar

27 G.Chai, Y.Sun, J. J.Sun, Q.Chen: Mechanical properties of carbon nanotube–copper nanocomposites, Journal of Micromechanics and Microengineering18 (2008), No. 3, pp. 1410.1088/0960-1317/18/3/035013Suche in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-09-01

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Burst Strength of Composite Cylinders – Assessment of the Type of Statistical Distribution
  5. Effects of Zn/Cu Ratio and Silicon on Microstructure, Mechanical Properties, Tarnish and Corrosion Resistance of As-Cast 940 Silver Alloys
  6. Analysis of the Frequency as an Integral Method for the Testing of Anisotropic 3D Sheet Metal Structure
  7. Mechanical and Thermal Properties of a Cu-CNT Composite with Carbon Nanotubes Synthesized by CVD Process
  8. The Mechanical and Electrical Properties of the Ternary Bi-Ga-Sb System
  9. Experimental Investigation of the Corrosion Mechanism of Cemented Soils in Magnesium Sulfate Solution
  10. Experimental and Analytical Study of Masonry Constructions Reinforced with Bed Joints
  11. The Fracture Toughness of Fe2B Formed on Boronized AISI 304
  12. Effects of Ferroboron and Ferrochromium Powder Addition on Abrasive Wear Resistance of Fe-Based Hardfacing Coatings
  13. Fabrication of Al/Mg Bimetal Compound Casting by Lost Foam Technique and Liquid-Solid Process
  14. Effects of Si and Zn on Machinability and Wear Resistance of AZ91 and AS91 Magnesium Alloys
  15. DIRECTT-Rekonstruktionen im Vergleich zur gefilterten Rückprojektion
  16. Reduzierung von Missing-Wedge-Artefakten der CT mit DIRECTT
  17. Röntgentomografische Untersuchung eines kommerziellen Lithium-Ionen-Kondensators*
  18. Machining Parameter Optimization of Bidirectional CFRP Composite Pipe by Genetic Algorithm
  19. Investigation of Lost Foam Casted Aluminum Bimetal Microstructures
  20. Taguchi-Based Grey Relation Optimization of Machining Parameters and Cutting Path Strategies in CNC Pocket Milling Operations
  21. Reliable Evaluation of Acceptability of Weld for Final Disposal Based on the Canister Copper Weld Inspection Using Different NDT Methods
  22. Evaluation of the Reliability of NDTesting in Russian Railway Transport
  23. Vorschau/Preview
  24. Vorschau
Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110615/html?lang=de
Button zum nach oben scrollen