Home Technology A Numerical Study on the Mechanical Properties and the Processing Behaviour of Composite High Strength Steels
Article
Licensed
Unlicensed Requires Authentication

A Numerical Study on the Mechanical Properties and the Processing Behaviour of Composite High Strength Steels

  • Sebastian Münstermann , Napat Vajragupta , Bernadette Weisgerber and Andreas Kern
Published/Copyright: August 22, 2013
Become an author with De Gruyter Brill

Abstract

The demand for lightweight construction in mechanical and civil engineering has strongly promoted the development of high strength steels with excellent damage tolerance. Nowadays, the requirements from mechanical and civil engineering are even more challenging, as gradients in mechanical properties are demanded increasingly often for components that are utilized close to the limit state of load bearing capacity. A metallurgical solution to this demand is given by composite rolling processes. In this process components with different chemical compositions were jointed, which develop after heat treatment special properties. These are actually evaluated in order to verify that structural steels with the desired gradients in mechanical properties can be processed. A numerical study was performed aiming to numerically predict strength and toughness properties, as well as the processing behaviour using Finite Element (FE) simulations with damage mechanics approaches. For determination of mechanical properties, simulations of tensile specimen, SENB sample, and a mobile crane have been carried out for different configurations of composite rolled materials out of high strength structural steels. As a parameter study, both the geometrical and the metallurgical configurations of the composite rolled steels were modified. Thickness of each steel layer and materials configuration have been varied. Like this, a numerical procedure to define optimum tailored configurations of composite high strength steels could be established.

Abstract

Der in den vergangenen Jahren immer intensiver geführten Leichtbaudiskussion ist die Stahlindustrie durch die Entwicklung von hochbeanspruchbaren Konstruktionsstählen mit exzellenter Schadenstoleranz begegnet. Mittlerweile ist allerdings abzusehen, dass die gängigen Optimierungskonzepte nahezu erschöpft sind, sodass völlig neue Konzepte zur Eigenschaftsoptimierung angewandt werden müssen, um die stetig verschärften Anforderungen des Maschinenbaus und Stahlhochbaus zu befriedigen. Eine vielversprechende Methode ist hierbei die Entwicklung von Verbundwerkstoffen auf Stahlbasis, in denen in einem Warmwalzprozess Stahlwerkstoffe unterschiedlicher chemischer Zusammensetzung miteinander verbunden werden und während der nachfolgenden Wärmebehandlung unterschiedliche Eigenschaftsprofile entwickeln. Im Rahmen der hier vorgestellten Arbeit wurden auf Basis von Finite Elemente Simulationen (FE) die Festigkeits-, Zähigkeits- und Stabilitätseigenschaften solcher Verbundwerkstoffe numerisch vorausberechnet. Zu diesem Zweck wurden Zugversuche sowie Kerbschlagbiegeversuche an SENB-Proben simuliert. Darüber hinaus wurde auch das Stabilitätsverhalten eines Mobilkranauslegers berechnet. In allen Berechnungen wurden unterschiedliche geometrische und metallurgische Konfigurationen der Verbundwerkstoffe betrachtet, um den Werkstoffentwicklungsprozess zu optimieren.

References

1 CzyrycaE. J.: Advances in High Strength Steel Technology for Naval Hull Construction, Key Engineering Material84–85 (1993), pp. 49152010.4028/www.scientific.net/KEM.84-85.491Search in Google Scholar

2 KrishnadevM. R., RedM.: Proceedings of the international Conference on Technology and Applications of HSLA Steels, Metals Park, Ohio, USA (1984), ASM, Vol. 129, p. 77Search in Google Scholar

3 WilsonA. D., HamburgE. G., ColvinD. J., ThompsonS.W., KraussG.: Properties and Microstructures of Copper Precipitation Aged Steel Plates, Proceedings on the International Conference on Microalloyed HSLA Steel, Microall oying' 88, ASM International, Metals Park, Ohio, USA (1988), pp. 259276Search in Google Scholar

4 TanakaT.: Four stages of the Thermomechani-cal Processing in HSLA steels, International Conference on HSLA Steels, Wollongong, N.S.W. (1984), pp. 616Search in Google Scholar

5 CrisbacherC. J., GrossJ. H., StoutR. D., TodaroI. D.: Thermomechanical Processing of low-carbon high-yield strength steels −100 KSI high yield strength steels, International Symposium on High Performance Steels for Structural Applications, Cleveland, Ohio (1995), pp. 7584Search in Google Scholar

6 GarciaC. I., DeArdoA. J., RaykinE., DefilippiI. D.: High performance steels for structured applications, International Symposium on High Performance Steels for Structural Applications, Cleveland, Ohio (1995), p. 155Search in Google Scholar

7 McClintockF. A.: A Criterion for Ductile Fracture by the Growth of Holes, J. Appl. Mech. (1968), Vol. 35, pp. 36337110.1115/1.3601204Search in Google Scholar

8 RiceJ. R., TraceyD. M.: On the ductile enlargement of voids in triaxial stress fields, Journal of the Mechanics and Physics of Solids17 (1969), pp. 20121710.1016/0022-5096(69)90033-7Search in Google Scholar

9 JohnsonG. R., CookW. H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures, Engineering Fracture Mechanics21 (1985), pp. 314810.1016/0013-7944(85)90052-9Search in Google Scholar

10 NeedlemanA., TvergaardV.: An Analysis of Ductile Rupture in Notched Bars, Journal of the Mechanics and Physics of Solids32 (1984), No. 6, pp. 46149010.1016/0022-5096(84)90031-0Search in Google Scholar

11 ArndtJ., MajediH., DahlW.: Influence of strain history on ductile failure of steel, J. Phys. IV (1996), Co, pp. 2332Search in Google Scholar

12 BandstraJ. P., KossD. A.: A simulation of growth and coalescence of voids during ductile fracture, Materials Science and Engineering A387–389 (2004), pp. 39940310.1016/j.msea.2004.02.092Search in Google Scholar

13 BaoY., WierzbickiT.: On fracture locus in the equivalent strain and stress triaxiality space, International Journal of Mechanical Sciences46 (2004), pp. 819810.1016/j.ijmecsci.2004.02.006Search in Google Scholar

14 BaiY., WierzbickiT.: A new model of metal plasticity and fracture with pressure and Lode dependence, International Journal of Plasticity24 (2008), pp. 1071109610.1016/j.ijplas.2007.09.004Search in Google Scholar

15 XueL., WierzbickiT.: Numerical simulation of fracture mode transition in ductile plates, International Journal of Solids and Structures, 46 (2009), pp. 1423143510.1016/j.ijsolstr.2008.11.009Search in Google Scholar

16 MironeG., CoralloD.: A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening, International Journal of Plasticity (2009) Vol. 26, Issue 3, pp. 34837110.1016/j.ijplas.2009.07.006Search in Google Scholar

17 WierzbickiT., BaoY., LeeY.-W., BaiY.: Calibration and evaluation of seven fracture models, International Journal of Mechanical Sciences47 (2005), pp. 71974310.1016/j.ijmecsci.2005.03.003Search in Google Scholar

18 MünstermannS., PrahlU., BleckW.: Numerical Modeling of Toughness and Failure Processes in Steel Structures, Steel Research International78 (2007), No. 3, pp. 224235Search in Google Scholar

Published Online: 2013-08-22
Published in Print: 2013-05-02

© 2013, Carl Hanser Verlag, München

Downloaded on 21.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110442/html
Scroll to top button