Startseite Upgrading of an Ultrasonic Fatigue Testing Machine by Means of Early Stage Damage Detection
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Upgrading of an Ultrasonic Fatigue Testing Machine by Means of Early Stage Damage Detection

  • Stephan Kovacs , Sebastian Stille , Daniel Ernstes und Tilmann Beck
Veröffentlicht/Copyright: 26. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This contribution highlights the implementation of different methods for early stage damage detection in very high cycle fatigue (VHCF) experiments by means of an ultrasonic testing machine developed by BOKU in Vienna. Basically three different methods are used for in-situ evaluation of degradation: the analysis of (i) the harmonics, (ii) the development of the resonance frequency, (iii) the damping behaviour of the specimen at the end of each testing pulse. The fatigue experiments and measurements of the relevant parameters are controlled using the software LabView. We demonstrate the sensivity of the different methods on two specimen variants: (i) round samples of the chromium steel X10CrNiMoV12-2-2 and (ii) flat samples of the aluminium alloy Al-2024.

Kurzfassung

Dieser Beitrag beschreibt die Implementierung verschiedener Methoden zur frühzeitigen Schädigungsdetektion bei Ultraschall-Ermüdungsversuchen im Bereich sehr hoher Lastspielzahlen (VHCF) durch den Einsatz von Ultraschall-Prüfsysteme, die von BOKU (Wien) entwickelt wurden. Zur in-situ Bewertung der Ermüdungsschädigung werden drei Methoden angewandt: (i) eine Oberwellenanalyse der Probenbeanspruchung, (ii) die Entwicklung der Resonanzfrequenz über der Zykluszahl, (iii) das Dämpfungsverhalten der Proben am Ende jedes Prüfimpulses. Die Ermüdungsversuche sowie die Messungen der relevanten Parameter werden mithilfe der Software LabView gesteuert und ausgewertet. Die Sensitivität der drei untersuchten Methoden wird exemplarisch an zwei technisch relevanten Probensystemen: (i) Rundproben des Chromstahls X10CrNiMoV12-2-2, sowie (ii) Al-2024 Flachproben dargestellt.


Stephan Kovacs was born in 1983 in Aachen, Germany. After studying material science at the RWTH Aachen, Germany, he works at the Institute of Energy and Climate Research (IEK) of the Forschungszentrum Jülich, Germany, as PhD student since August 2010 in the department of Microstructure and Properties of Materials (IEK-2) with the focus on very high cycle fatigue (VHCF).

Sebastian Stille was born in 1984 in Dinslaken, Germany. He studied physics at RWTH Aachen University, Germany, as well as material and nano-science at UPMC Paris VI, France. Since 2012 he works as PhD student at the Institute of Energy and Climate Research IEK-2 at Forschungszentrum Jülich, Germany. His work lies in the field of very high cycle fatigue of materials.

Daniel Ernstes was born in 1985 in Aachen, Germany. He studied engineering specializing in aviation at RWTH Aachen University, Germany. During his studies he participated in a research project about detecting early stage damage in very high cycle fatigue experiments. After several contracts with Airbus Operations GmbH in research and technology departments during studies, he started working for a supplier of Airbus in Hamburg, Germany, in November 2012 focusing on development of new aircraft equipment.

Tilmann Beck, born 1967, studied mechanical engineering at Universität Karlsruhe, Germany, from 1989 to 1995. With a research work on isothermal thermomechanical fatigue of fiber-reinforced aluminum alloys, he received his Dr.-Ing. degree in 1999. From 1999 to 2006 he was head of the Near Service Loadings Lab at the Institute of Materials Science and Engineering of Universität Karlsruhe, Germany. 2007 he joined the Institute of Energy and Climate Research IEK-2 at Forschungszentrum Jülich, Germany, as head of the department “metallic structural materials”. Since 2008 he is professor of High Temperature Materials Mechanics at RWTH Aachen University, Germany, and since 2011 head of the Materials Mechanics section of IEK-2.


References

1 C.Berger, B.Pyttel, D.Schwerdt: Beyond HCF – Is there a fatigue limit?, Materialwissenschaft und Werkstofftechnik39 (2008) 10, pp. 769776Suche in Google Scholar

2 H.Mughrabi: Cyclic Slip Irreversibilities and the Evolution of Fatigue Damage, Metallurgical and Materials Transactions A40 (2009) 6, pp. 1257127910.1007/s11661-009-9839-8Suche in Google Scholar

3 S.E.Stanzl-Tschegg: Ultrasonic fatigue 6 th Int. Fatigue Congress III (1996), pp. 18871898Suche in Google Scholar

4 H.Mayer: Fatigue crack growth and threshold measurements at very high frequencies, International Materials Reviews44 (1999) 1, pp. 13410.1179/imr.1999.44.1.1Suche in Google Scholar

5 C.Bathias, L.Drouillac, P.le François: How and why the fatigue S-N curve does not approach a horizontal asymptote?International Journal of Fatigue23 (2001), pp. 143151Suche in Google Scholar

6 P. B.Nagy: Fatigue damage assessment by nonlinear ultrasonic materials characterization, Ultrasonics36 (1998) 1–5, pp. 375381Suche in Google Scholar

7 K.-Y.Jhang: Applications of nonlinear ultrasonics to the NDE of material degradation, Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on47 (2000) 3, pp. 54054810.1109/58.842040Suche in Google Scholar PubMed

8 K. Y.Jhang, K.Kyung-Cho: Evaluation of material degradation using nonlinear acoustic effect, Ultrasonics37 (1999), pp. 3944Suche in Google Scholar

9 F.Windels, K.Van Den Abeele: The influence of localized damage in a sample on its resonance spectrum, Ultrasonics42 (2004) 1–9, pp. 10251029Suche in Google Scholar

10 A.Kumar, C.J.Torbet, J.W.Jones, T.M.Pollock: Nonlinear ultrasonics for in situ damage detection during high frequency fatigue, Journal of Applied Physics106 (2009) 2, pp. 0249041 bis 024904-9Suche in Google Scholar

11 A.Kumar, C.J.Torbet, T. M.Pollock, J.Wayne Jones: In situ characterization of fatigue damage evolution in a cast Al alloy via nonlinear ultrasonic measurements, Acta Materialia58 (2010) 6, pp. 21432154Suche in Google Scholar

12 A.Kumar, R.R.Adharapurapu, J.W.Jones, T.M.Pollock: In-situ damage assessment in a cast magnesium alloy during very high cycle fatigue, Scripta Materialia64 (2011) 1, pp. 6568Suche in Google Scholar

13 M.Koster, H.Nutz, W.Freeden, E.Dietmar: Measuring techniques for very high cycle fatigue behaviour of high strength steel at ultrasonic frequencies, Int. J. Mat. Res.103 (2012), pp. 106112Suche in Google Scholar

14 D.-G.Shang, M.E.Barkey, Y.Wang, T. C.Lim: Effect of fatigue damage on the dynamic response frequency of spot-welded joints, International Journal of Fatigue25 (2003) 4, pp. 311316Suche in Google Scholar

15 A.Y.Bydzan, S.V.Panin: Investigation of fatigue damage of 20Kh13 structural steel and its compositions with fused coatings by the free vibration method, Russian Journal of Nondestructive Testing39 (2003) 7, pp. 523535Suche in Google Scholar

16 A.Metya, M.Ghosh, N.Parida, S.Palit Sagar: Higher harmonic analysis of ultrasonic signal for aging behaviour study of C-250 grade maraging steel, NDT & E International41 (2008) 6, pp. 484489Suche in Google Scholar

17 S.P.Sagar, S.Das, N.Parida, D.K.Bhattacharya: Non linear ultrasonic technique to assess fatigue damage in structural steel, Scripta Materialia55 (2006) 2, pp. 199202Suche in Google Scholar

18 J.Y.Kim, L.J.Jacobs, J. M.Qu, J.W.Littles: Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves, Journal of the Acoustical Society of America120 (2006) 3, pp. 12661273Suche in Google Scholar

19 K. Y.Jhang: Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material: a review, International Journal of Precision Engineering and Manufacturing10 (2009) 1, pp. 12313510.1007/s12541-009-0019-ySuche in Google Scholar

20 S.Kovacs, T.Beck, L.Singheiser: Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF regime, Int. J. Fatigue, submittedSuche in Google Scholar

21 G.Drossel, S.Friedrich, C.Kammer, W.Lehnert: Aluminium Taschenbuch: Band 2: Umformung von Aluminium-Werkstoffen, Gieäen von Aluminium-Teilen, Oberflächenbehandlung von Aluminium, Recycling und –kologie, Beuth, 15 Edn. (2009)Suche in Google Scholar

22 aluminium.matter.org.ukSuche in Google Scholar

Published Online: 2013-05-26
Published in Print: 2013-02-01

© 2013, Carl Hanser Verlag, München

Heruntergeladen am 26.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110409/html?lang=de
Button zum nach oben scrollen