Startseite Effect of Nanoclay Amount and Compatibilizer Presence on Thermal, Morphological and Mechanical Behaviour of Nanoclay Reinforced Composite Polypropylene Cast Film
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of Nanoclay Amount and Compatibilizer Presence on Thermal, Morphological and Mechanical Behaviour of Nanoclay Reinforced Composite Polypropylene Cast Film

  • Ikilem Gocek und Sabit Adanur
Veröffentlicht/Copyright: 26. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Pure PP film without compatibilizer and nanoclay, nanoclay reinforced PP film without compatibilizer and nanoclay reinforced PP films with compatibilizer were produced to study the effect of nanoclay amount and compatibilizer presence on thermal, morphological and mechanical properties of films. Reinforced films were produced with 1% and 3% nanoclay contents with 3 different compatibilizer amounts to examine if nanoclay addition changes properties of the films in the same manner with different compatibilizer amounts. Melting points of the films slightly increase as the nanoclay content increases. Decomposition temperatures increase, as the nanoclay content increases. As the nanoclay content increases, tensile, burst and tear strengths for the reinforced films decrease. It can be observed that the increase in nanoclay content lowers strain and extension values for reinforced films due to nanoclay dispersion.

Kurzfassung

Reine PP-Folien ohne PP-Compatibilizer und Nanoclay, Nanoclay verstärkte PP-Folien ohne Compatibilizer und Nanoclay verstärkte PP-Folien mit Compatibilizer wurden hergestellt, um die Effekte der Nanoclay-Menge und der Anwesenheit von Compatibilizer auf die thermischen, morphologischen und mechanischen Eigenschaften der Folien zu untersuchen. Die verstärkten Folien wurden mit 1% und 3% Nanoclay mit drei verschiedenen Compatibilizer-Mengen hergestellt, um herauszufinden, ob die Nanoclay-Zugabe die Eigenschaften der Folien bei verschiedenen Compatibilizer-Mengen in derselben Weise verändert. Die Schmelzpunkte der Folien stiegen leicht mit der Erhöhung der Nanoclay-Menge. Die Zersetzungstemperatur erhöht sich mit steigendem Nanoclay-Zusatz. In der Weise, wie der Nanoclay-Zusatz steigt, fällt die Zug-, Berst- und Reißfestigkeit der verstärkten Folien. Es wurde festgestellt, dass eine Erhöhung des Nanoclay-Zusatzes die Verformungs- und Verlängerungswerte der verstärkten Folien infolge der Nanoclay-Verteilung absenkt.


Dr. Ikilem Gocek, Istanbul Technical University, Turkey, graduated from this University in Textile Engineering with a B.Sc. in 2004 and in Mechanical Engineering with a B.Sc. in 2006. She graduated from Istanbul Technical University in Textile Engineering with M.Sc. in 2007 and graduated from Auburn University Polymer and Fiber Engineering with a Ph.D. in 2010. Now she is working at Istanbul Technical University, Turkey, in the Textile Engineering Department as Post Doc and lecturer.

Prof. Dr. Sabit Adanur, Auburn University, USA, graduated from Istanbul Technical University in Mechanical Engineering with a B.Sc. in 1982, from North Carolina State University in Textile Engineering and Science with a M.Sc. in 1985 and from North Carolina State University Fiber and Polymer Science with a Ph.D. in 1989. He is now working at Auburn University (USA) in the Polymer and Fiber Engineering Department as professor.


References

1. D. A.Pereira de Abreu, P.Paseiro Losada, I.Angulo, J. M.Cruz: Development of new polyolefin films with nanoclays for application in food packaging, European Polymer Journal, 43 (2007), pp. 2229224310.1016/j.eurpolymj.2007.01.021Suche in Google Scholar

2. S. K.Sharma, A. K.Nema, S. K.Nayak: Polypropylene nanocomposite film: A critical evaluation on the effect of nanoclay on the mechanical, thermal, and morphological behaviour, Journal of Applied Polymer Science, 115 (2010), pp. 3463347310.1002/app.30883Suche in Google Scholar

3. G.Galgali, S.Agarwal, A.Lele: Effect of clay orientation on the tensile modulus of polypropylene nanoclay composites, Polymer, 45 (2004), pp. 6059606910.1016/j.polymer.2004.06.027Suche in Google Scholar

4. K.Kanny, P.Jawahar, V. K.Moodley: Mechanical and tribological behaviour of clay polypropylene nanocomposites, J. Mater. Sci., 43 (2008), pp. 7230723810.1007/s10853-008-2938-xSuche in Google Scholar

5. K.Kanny, V. K.Moodley: Characterization of polypropylene nanocomposite structure”, Journal of Engineering Materials and Technology, 129 (2007), pp. 10511210.1115/1.2400264Suche in Google Scholar

6. X.Tang, S.Alavi, T. J.Herald: Effects of plasticizers on structure and properties of starch clay nanocomposite films, Carbohydrate Polymers, 74 (2008), pp. 55255810.1016/j.carbpol.2008.04.022Suche in Google Scholar

7. H.Qin, S.Zhang, C.Zhao, M.Feng, M.Yang, Z.Shu, S.Yang: Thermal stability and flammability of polypropylene/montmorillonite composites, Polymer Degradation and Stability, 85 (2004), pp. 80781310.1016/j.polymdegradstab.2004.03.014Suche in Google Scholar

8. E. T.Thostenson, C.Li, and T. W.Chou: Nanocomposites in context, Composites Science and Technology, 65 (2005), pp. 49151610.1016/j.compscitech.2004.11.003Suche in Google Scholar

9. B. K.Kandola, G.Smart, A. R.Horrocks, P.Joseph, S.Zhang, T.R.Hull, J.Ebdon, B.Hunt, A.Cook: Effect of different compatibilizers on nanoclay dispersion, thermal stability, and burning behaviour of polypropylene-nanoclay blends, Journal of Applied Polymer Science, 108 (2008), pp. 816824Suche in Google Scholar

10. L.Cauvin, N.Bhatnagar, M.Brieu, D.Kondo: Experimental study and micromechanical modeling of mmT platelet reinforced PP nanocomposites, C. R. Mecanique, 335 (2007), pp. 70270710.1016/j.crme.2007.07.007Suche in Google Scholar

11. S.Morlat, B.Mailhot, D.Gonzalez, J.L.Gardette: Photo-oxidation of polypropylene/montmorillonite nanocomposites. 1. Influence of nanoclay and compatibilizing agent, Chem. Mater., 16 (2004), pp. 37738310.1021/cm031079kSuche in Google Scholar

12. A.Mirzadeh, M.Kokabi: The effect of composition and draw-down ratio on morphology and oxygen permeability of polypropylene nanocomposite blown films, European Polymer Journal, 43 (2007), pp. 3757376510.1016/j.eurpolymj.2007.06.014Suche in Google Scholar

13. R.Nowacki, B.Monasse, E.Piorkowska, A.Galeski, J. M.Haudin: Spherulite nucleation in isotactic polypropylene based nanocomposites with montmorillonite under shear, Polymer, 45 (2004), pp. 48774892Suche in Google Scholar

14. S.Zhang, T. R.Hull, A. R.Horrocks, G.Smart, B. K.Kandola, J.Ebdon, P.Joseph, B.Hunt: Thermal degradation analysis and XRD characterization of fiber-forming synthetic polypropylene containing nanoclay, Polymer Degradation and Stability, 92 (2007), pp. 727732Suche in Google Scholar

15. Y. T.Vu, G. S.Rajan, J. E.Mark, C. L.Myers: Reinforcement of elastomeric polypropylene by nanoclay fillers, Polymer International, 53 (2004), pp. 1071107710.1002/pi.1493Suche in Google Scholar

16. A.Christie: Polypropylene crystallization effects on film forming, www.optexprocesssolutions.com (access date: 09/ 01/ 2009)Suche in Google Scholar

17. S.Zhang, A. R.Horrocks, R.Hull, B. K.Kandola: Flammability, degradation and structural characterization of fiber-forming polypropylene containing nanoclay flame retardant combinations, Polymer Degradation and Stability, 91 (2006), pp. 719725Suche in Google Scholar

18. S. H.Tabatabaei, P. J.Carreau, A.Ajji: Effect of processing on crystalline orientation, morphology and mechanical properties of polypropylene cast films and microporous membrane formation, Polymer, 50 (2009), pp. 4228424010.1016/j.polymer.2009.06.071Suche in Google Scholar

19. http://www.scprod.com (access date: 02/01/2010)Suche in Google Scholar

20. www2.dupont.com (access date: 02/01/2010)Suche in Google Scholar

21. www.leistritz.com (access date: 02/01/2010)Suche in Google Scholar

22. http://www.speciation.net/Appl/Techniques/technique.html?id=663 (access date: 02/01/2010)Suche in Google Scholar

23. http://www.emsdiasum.com/microscopy/products/equipment/carbon_coater.aspx (access date: 02/01/2010)Suche in Google Scholar

24. http://www.instron.us/wa/products/universal_material/5560.aspx (access date: 02/01/2010)Suche in Google Scholar

25. ASTM Standard D 882-02, Vol. 8.01: Test Method for Tensile Properties of Thin Plastic Sheeting, American Society for Testing and Materials, Philadelphia, PA (2002)Suche in Google Scholar

26. ASTM Standard D 6797-02, Vol. 7.01: Test Method for Bursting Strength of Fabrics Constant-Rate-of-Extension (CRE) Ball Burst Test, American Society for Testing and Materials, Philadelphia, PA (2002)Suche in Google Scholar

27. http://www.instron.us/wa/products/universal_material/5560.aspx (access date: 02/01/2010)Suche in Google Scholar

28. ASTM Standard D 1938-06, Vol. 8.01: Test Method for Tear-Propagation Resistance (Trouser Tear) of Plastic Film and Thin Sheeting by a Single-Tear Method, American Society for Testing and Materials, Philadelphia, PA (2006)Suche in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-05-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 30.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110335/html?lang=de
Button zum nach oben scrollen