Home Weld Metal Grain Refinement of Aluminium Alloy 5083 through Controlled Additions of Ti and B
Article
Licensed
Unlicensed Requires Authentication

Weld Metal Grain Refinement of Aluminium Alloy 5083 through Controlled Additions of Ti and B

  • Philipp Schempp , Christopher Schwenk , Michael Rethmeier and Carl Edward
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

The refinement of the weld metal grain structure may lead to a significant change in its mechanical properties and in the weldability of the base metal. One possibility to achieve weld metal grain refinement is the inoculation of the weld pool. In this study, it is shown how additions of titanium and boron influence the weld metal grain structure of GTA welds of the aluminium alloy 5083 (Al Mg4.5Mn0.7). For this purpose, inserts consisting of base metal and additions of the master alloy Al Ti5B1 have been cast, deposited in the base metal and fused in a GTA welding process. The increase of the Ti and B content led to a significant decrease of the weld metal mean grain size and to a change in grain shape. The results provide a basis for a more precise definition of the chemical composition of commercial filler wires and rods for aluminium arc welding.

Kurzfassung

Kornfeinung im Schweißgut kann die mechanischen Eigenschaften der Schweißnaht und die Schweißeignung des Grundwerkstoffs deutlich verbessern. Eine Möglichkeit korngefeintes Schweißgut zu erreichen, ist das Versetzen des Schmelzbades mit kornfeinenden Mitteln. In dieser Studie wird gezeigt wie Titan- und Borzusätze Korngröße und -struktur von WIG-Schweißnähten der Al-Legierung 5083 (Al Mg4,5Mn0,7) beeinflussen. Dazu wurden in einem Gießprozess stäbchenförmige Einlagen hergestellt, die aus Grundwerkstoff und definierten Zusätzen der Kornfeinungslegierung Al Ti5B1 bestanden. Sie wurden als Ersatz für einen Schweißzusatzwerkstoff in einer Nut im Grundwerkstoff untergebracht und im WIG-Verfahren überschweißt. Durch die Steigerung des Titan- und Borgehalts im Schweißgut konnte dessen mittlere Korngröße deutlich verringert werden. Außerdem wurde eine Änderung der Kornstruktur beobachtet. Die Ergebnisse können als Grundlage genutzt werden, um die empfohlene chemische Zusammensetzung von Schweißzusätzen für Lichtbogenschweißen von Aluminium anzupassen.


Dipl.-Ing. Philipp Schempp, born 1983, studied from 2003 to 2009 Mechanical Engineering at the Universities of Stuttgart, Germany, and Valencia, Spain (semester abroad). Since 2009 he is PhD student at the BAM – Federal Institute for Materials Research and Testing, working in the division “Safety of Joined Components”.

Dr.-Ing. Christopher Schwenk, born 1977, studied mechanical engineering at the TU in Braunschweig, Germany. In 2004 he went to the Volkswagen AG corporate research where he received his Ph.D. from the TU of Berlin in the field of welding simulation. Since 2007, Dr. Schwenk is group leader for welding simulation and arc welding at the Federal Institute for Materials Research and Testing BAM in Berlin. In 2009, he additionally became leader of the department “Joining and Coating Technology” at the Fraunhofer-Institute for Production Systems and Design Technology IPK in Berlin.

Prof. Dr.-Ing. Michael Rethmeier, born 1972, studied mechanical engineering at the TU in Braunschweig, Germany. Afterwards he worked at the same university where he received his Ph.D. in 2003 and then became project manager for production engineering and concepts at the Volkswagen AG group research. In 2007 he got his full professorship of the TU of Berlin in combination with being head of the division “Safety of Joined Components” at the Federal Institute for Materials Research and Testing BAM in Berlin. Additionally, he is the division director of “Joining and Coating Technology” of the Fraunhofer Institute for Production Systems and Design Technology IPK in Berlin.

Dr. Carl Edward Cross, born 1953, has over 35 years experience in welding research and more than 50 publications, working in both industry (Rockwell International and Martin Marietta) and academia (Colorado School of Mines and Univ. Montana). He has specialized in the weldability, corrosion, and solidification characterization of aluminum, magnesium, titanium, and stainless steel alloys. He has held post-doc positions at universities in Hamburg (Univ. Bundeswehr) and Trondheim (NTNU), and most recently has worked as Senior Scientist at the Federal Institute for Materials Research and Testing (BAM) in Berlin, Germany. Currently he serves as Staff Scientist in the Metallurgy Group at Los Alamos National Laboratory, Los Alamos, New Mexico.


References

1 M. J.Dvornak, R. H.Frost, D. L.Olson: Influence of Solidification Kinetics on Aluminum Weld Grain Refinement, Welding Journal70 (1991), No. 10, pp. 271276Search in Google Scholar

2 G. D.Janaki Ram, T. K.Mitra, M. K.Raju, S.Sundaresan: Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al-Li alloy, Materials Science and Engineering A276 (2000), pp. 485710.1016/S0921-5093(99)00515-8Search in Google Scholar

3 M. J.Dvornak, R. H.Frost, D. L.Olson: The Weldability and Grain Refinement of Al-2.2 Li-2.7Cu, Welding Journal68 (1989), No. 1989, pp. 327s–335sSearch in Google Scholar

4 M. G.Mousavi, C. E.Cross, Ø.Grong: Effect of scandium and titanium-boron on grain refinement and hot cracking of aluminium alloy 7108, Science and Technology of Welding and Joining4 (1999), No. 6, pp. 38138810.1179/136217199101538030Search in Google Scholar

5 P.Desnain, Y.Fautrelle, J.-L.Meyer, J.-P.Riquet, F.DurandPrediction of equiaxed grain density in multicomponent alloys, stirred electromagnetically, Acta Metallurgica et Materialia38 (1990), No. 8, pp. 1513152310.1016/0956-7151(90)90119-2Search in Google Scholar

6 B. P.Pearce, H. W.Kerr: Grain Refinement in Magnetically Stirred GTA Welds of Aluminum Alloys, Metallurgical and Materials Transactions B12 (1981), pp. 47948610.1007/BF02654317Search in Google Scholar

7 S. R.Koteswara Rao, G.Madhusudhana Reddy, M.Kamaraj, K.Prasad Rao: Grain refinement through arc manipulation techniques in Al-Cu alloy GTA welds, Materials Science and Engineering A404 (2005), pp. 22723410.1016/j.msea.2005.05.080Search in Google Scholar

8 R. R.Ambriz, G.Barrera, R.García, V. H.López: Effect of the weld thermal cycles of the modified indirect electric arc on the mechanical properties of the AA6061-T6 alloy, Welding International24 (2010), 4, pp. 32132810.1080/09507110903568778Search in Google Scholar

9 G. D.Janaki Ram, T. K.Mitra, V.Shankar, S.Sundaresan: Microstructural refinement through inoculation of type 7020 Al-Zn-Mg alloy welds and its effect on hot cracking and tensile properties, Materials Science and Engineering A142 (2003), pp. 174181Search in Google Scholar

10 D. G.McCartney: Grain refining of aluminium and its alloys using inoculants, International Materials Reviews34 (1989), No. 5, pp. 247260Search in Google Scholar

11 W.Rosenhain, J. D.Grogan, T. H.Schofield: Gas removal and grain refinement in aluminium alloys, Journal of the Institute of Metals, 44 (1930), pp. 305330Search in Google Scholar

12 B. S.Murty, S. A.Kori, M.Chakraborty: Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, International Materials Reviews47 (2002), No. 1, pp. 32910.1179/095066001225001049Search in Google Scholar

13 W.Schneider, D. H.StJohn, A. L.Greer: Solidification Processing of Foundry Alloys: Mechanism of Grain Refinement of Aluminium – Almost All You Need to Know, Proceedings of the International Conference on Aluminium Alloys 1 (2008), pp. 383–392Search in Google Scholar

14 M. M.Guzowski, G. K.Sigworth, D. A.Sentner: The Role of Boron in the Grain Refinement of Aluminum with Titanium, Metallurgical and Materials Transactions A18 (1987), pp. 60361910.1007/BF02649476Search in Google Scholar

15 J. D.Schloz,: Fundamentals of Grain Refining Aluminum Alloys, Light Metal Age4 (2010), pp. 3037Search in Google Scholar

16 L.Bäckerud, E.Król, J.Tamminen: Solidification Characteristics of Aluminium Alloys – Volume 1: Wrought Alloys, Skanaluminium Universitetsforlaget AS, Oslo (1986)Search in Google Scholar

17 L.Bäckerud, M.Johnsson: The Relative Importance of Nucleation and Growth Mechanisms to Control Grain Size in Various Aluminum Alloys, Technical Sessions at the 125th TMS Annual Meeting – Light Metals (1996), pp. 679685Search in Google Scholar

18 P. L.Threadgill, N.Bailey: The prospects for weld pool grain refinement, Proceedings of the International Conference on Weld Pool Chemistry and Metallurgy 44 (1980), paper 33, pp. 9–16Search in Google Scholar

19 H.Yunjia, R. H.Frost, D. L.Olson, G. R.Edwards: Grain Refinement of Aluminum Weld Metal, Welding Journal68 (1989), 7, pp. 280s–289sSearch in Google Scholar

20 P. C.Seshagiri, B. S.Nair, G. M.Reddy, K. S.Rao, S.S.Bhattacharya, K.P.Rao: Improvement of mechanical properties of aluminium-copper-alloy (AA2219) GTA welds by Sc addition, Science and Technology of Welding and Joining13 (2008), 2, pp. 14615810.1179/174329308X283866Search in Google Scholar

21 M. J.Dvornak, R. H.Frost, D. L.Olson: Effects of Grain Refinement of Aluminum Weldability, Proceedings of the Materials Weldability Symposium, ASM International (1990), pp. 289–295Search in Google Scholar

22 S.Dev, A.Archibald Stuart, R. C.Ravi Dev Kumaar, B. S.Murty, K.Prasad Rao: Effect of scandium additions on microstructure and mechanical properties of Al-Zn-Mg alloy welds, Materials Science and Engineering A467 (2007), pp. 13213810.1016/j.msea.2007.02.080Search in Google Scholar

23 DIN EN ISO 18273: Welding Consumables – Wire electrodes, wires and rods for welding of aluminium and aluminium alloys, Beuth-Verlag, Berlin (2004)Search in Google Scholar

24 AWS A5.10/A5.10M 1999 (R2007): Specification for Bare Aluminum and Aluminum-Alloy Welding Electrodes and Rods, AWS (2007)Search in Google Scholar

25 ASTM E 112-96: Standard Test Methods for Determining Average Grain Size, ASTM International, West Conshohocken, (1996)Search in Google Scholar

26 M. C.Flemings: Solidification Processing, Metallurgical Transactions5 (1974), pp. 2121213410.1007/BF02643923Search in Google Scholar

27 F. A.Crossley, L. F.Mondolfo: Mechanism of Grain Refinement in Aluminum Alloys, Journal of Metals191 (1951), pp. 11431148Search in Google Scholar

28 A. M.Bunn, P. V.Evans, D. J.Bristow, A. L.Greer: Modelling of the Effectiveness of Al-Ti-B Refiners in Commercial Purity Aluminium, Light Metals, TMS, Warrendale (1998), pp. 963968Search in Google Scholar

29 M.Easton, D.StJohn: An Analysis of the Relationship between Grain Size, Solute Content, and the Potency and Number Density of Nucleant Particles, Metallurgical and Materials Transactions A36 (2005), pp. 1911192010.1007/s11661-005-0054-ySearch in Google Scholar

30 I.Maxwell, A.Hellawell: A Simple Model for Grain Refinement during Solidification, Acta Metallurgica23 (1975), pp. 22923710.1016/0001-6160(75)90188-1Search in Google Scholar

31 S.Henry, G.-U.Grün, M.Rappaz: Influence of Convection on Feathery Grain Formation in Aluminum Alloys, Metallurgical and Materials Transactions A35 (2004), 8, pp. 2495250110.1007/s11661-006-0229-1Search in Google Scholar

32 S.Henry, T.Minghetti, M.Rappaz: Dendrite Growth Morphologies in Aluminium Alloys, Acta Materialia46 (1998), 18, pp. 6431644310.1016/S1359-6454(98)00308-5Search in Google Scholar

33 A. N.Turchin, M.Zuijderwijk, J.Pool, D. G.Eskin, L.Katgerman: Feathery grain growth during solidification under forced flow conditions, Acta Materialia55 (2007), No. 11, pp. 3795380110.1016/j.actamat.2007.02.030Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-10-01

© 2011, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110265/html
Scroll to top button