Home General Standard for Welding Simulation*
Article
Licensed
Unlicensed Requires Authentication

General Standard for Welding Simulation*

  • Christopher Schwenk , Dmitrij Tikhomirov , Gerd Esser and Michael Rethmeier
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

For differentiating the applicability of various numerical welding simulation methods as well as unifying the prerequisites and the steps to be taken in simulation, normative codes are required for the user. Since any standard-like documents are currently still lacking in this field, the DIN German Institute for Standardization in partnership with the Research Association of DVS German Welding Society have set up a standards committee dealing with the preparation of respective documents.

This article focuses on the presentation of the new DIN Spec 32534-1 explaining the major simulation steps and specifying the application fields and the key terms of welding simulation. In addition, a generally valid simulation structure has been established which is intended to serve as a recommendation for customers and suppliers in formulating and handling a service order as well as for persons who start doing welding simulation for the first time. It additionally gives an overview of the other subject areas dealt with in the standards committee as well as of the international activities in this field.

Kurzfassung

Für die Abgrenzung der Anwendbarkeit verschiedener Methoden der numerischen Schweißsimulation sowie für die Vereinheitlichung der Voraussetzungen und der durchzuführenden Schritte bei der Simulation sind normative Regelwerke für den Anwender erforderlich. Da es derzeit noch keine normähnlichen Dokumente auf diesem Gebiet gibt, wurde vom Deutschen Institut für Normung e.V. DIN in Zusammenarbeit mit der Forschungsvereinigung des DVS Deutscher Verband für Schweißen und verwandte Verfahren e.V. ein Arbeitsausschuss gegründet, welcher sich mit der Erarbeitung der entsprechenden Dokumente befasst.

Der vorliegende Beitrag konzentriert sich auf die Vorstellung der neuen DIN Spec 32534-1, welche die grundlegenden Simulations-Schritte erläutert und ihre Anwendungsfelder sowie die Schlüsselbegriffe spezifiziert. Des Weiteren wurde eine allgemein gültige Simulationsstruktur erarbeitet, welche als Empfehlung für den Auftraggeber und den Auftragnehmer bei der Formulierung und Abwicklung eines Dienstleistungsauftrages sowie für den Neueinstieg in die Schweißsimulation dienen soll. Schließlich wird ein Ausblick auf die weiteren Themenfelder des Arbeitsausschusses sowie auf die internationalen Aktivitäten auf diesem Gebiet gegeben.


*

This contribution has also been published as an IIW working unit document from the select committee SC Automotive and Road Transport under the document number SC-Auto-44-11.

Dr.-Ing. Christopher Schwenk, born 1977, studied mechanical engineering at the TU in Braunschweig, Germany. In 2004 he went to the Volkswagen AG corporate research where he received his Ph.D. from the TU of Berlin in the field of welding simulation. Since 2007, Dr. Schwenk is group leader for welding simulation and arc welding at the Federal Institute for Materials Research and Testing BAM in Berlin. In 2009, he additionally became leader of the department “Joining and Coating Technology” at the Fraunhofer-Institute for Production Systems and Design Technology IPK in Berlin.

Dr.-Ing. Dmitrij Tikhomirov, born 1972, studied civil engineering at the Moscow State University of Railway Transport. Afterwards he worked for two years as a lecturer at the same University. In 1996 he came as a DAAD fellow to the University of Hannover and has completed his Ph.D. there in 2000. Since 2001 he works as a project engineer at the Inpro GmbH in Berlin in the department „Process simulation“. Since 2010 he is a chairman of the joint committee FA I2 „Weld simulation on Application“ of the Research Association of DVS German Welding Society.

Dr.-Ing. Gerd Esser, born 1965, studied physics at the RWTH Aachen and completed his Ph.D. in manufacturing technology at the University of Erlangen-Nuremberg, Germany. From 2001 to 2004 he worked at the BLZ GmbH, an Erlangen based research and engineering company with specific focus on laser technology, where he soon was appointed as managing director. After that he became head of innovation and research at Diehl, a worldwide operating industrial group with more than 13000 employees located in Nuremberg. Since 2006 he is now CEO of Inpro, a joint venture company of Daimler, Siemens, ThyssenKrupp, Volkswagen and the state of Berlin focusing on innovations in automotive production.

Prof. Dr.-Ing. Michael Rethmeier, born 1972, studied mechanical engineering at the TU in Braunschweig, Germany. Afterwards he worked at the same university where he received his Ph.D. in 2003 and then became project manager for production engineering and concepts at the Volkswagen AG group research. In 2007 he got his full professorship of the TU of Berlin in combination with being head of the division “Safety of Joined Components” at the Federal Institute for Materials Research and Testing BAM in Berlin. Additionally, he is the division director of “Joining and Coating Technology” of the Fraunhofer Institute for Production Systems and Design Technology IPK in Berlin.


Literatur

1 S.S.Babu, G.Sonnenberg, C.Schwenk, J.Goldak, H.Porzner, S.P.Khurana, W.Zhang, J.Gaylor: How can computational weld mechanics help industry? Welding Journal89 (2010), No. 1, pp. 4045Search in Google Scholar

2 C.Schwenk: Developing guidelines for numerical welding simulation, Welding Journal90 (2011), pp. 4951Search in Google Scholar

3 C.Schwenk, M.Rethmeier: Structured approach for transient 3D numerical welding simulation, H. Cerjak, N. Enzinger (Eds.): Mathematical Modelling of Weld Phenomena Vol.9 (2010), pp. 901917Search in Google Scholar

4 D.Radaj: Fachbuchreihe Schweißtechnik Vol. 141: Schweißprozeßsimulation: Grundlagen und Anwendungen, DVS-Verlag, Düsseldorf (1999)Search in Google Scholar

5 D.Radaj: Fachbuchreihe Schweißtechnik Vol. 143: Eigenspannungen und Verzug beim Schweißen: Rechen- und Meßverfahren, DVS-Verlag, Düsseldorf (2002)Search in Google Scholar

6 D.Radaj, A.Lundbaeck, L.-E.Lindgren: Verification and validation in computational welding mechanics, H. Cerjak, H.K.D.H. Bhadeshia (Ed.), E. Kozeschnik (Eds.): Mathematical Modelling of Weld Phenomena Vol.8 (2007), pp. 10391051Search in Google Scholar

7 P.Hurrell, C.Watson, J.Bouchard, M.Smith, R.Dennis, N.Leggatt, S.Bate, A.Warren: Development of weld modeling guidelines in the UK, Proceedings of the ASME 2009 Pressure Vessels and Piping Division Conference PVP2009, Dok. PVP2009-7754010.1115/PVP2009-77540Search in Google Scholar

8 D.Tikhomirov, C.Schwenk: Efficient numerical welding simulation through standardization, Welding and Cutting9 (2010), Vol. 5, pp. 292295Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110257/html
Scroll to top button