Home Numerical Optimization of Dental Implant Through the Concept of Functionally Graded Materials
Article
Licensed
Unlicensed Requires Authentication

Numerical Optimization of Dental Implant Through the Concept of Functionally Graded Materials

  • Hassan S. Hedia
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

The merge of materials science with the biological sciences has produced some advanced materials which are called functionally graded materials (FGMs) in order to provide the desired material characteristics. The FGMs concept originates in Japan in 1984 during the space plan project. FGMs are materials or structures in which the material properties vary with location in such a way as to optimize some functions of the overall FGMs.

It is well known that the main inorganic component of natural bone is hydroxyapatite (HAP) and that the main organic component is collagen (Col). Hydroxyapatite HAP implants are not bioabsorbable, and because induction of bone into and around the artificially made HAP is not always satisfactory, loosening or breakage of HAP implants may occur after implantation in the clinical application. The development of a new material which is bioabsorbable and which has osteoconductive activity is needed. Therefore, the aim of the current investigation is to design an implant, in the presence of cancellous bone as a thin layer around it, from functionally graded material. In this study, a novel biomaterial, collagen/hydroxyapatite (Col/HAP) as a functionally graded material (FGM), was developed using the finite element and optimization techniques which are available in the ANSYS package. These materials have a self-organized character similar to that of natural bone. The investigations have shown that the maximum stress in the cortical bone and cancellous bone for the Col/HAP functionally graded implant has been reduced by about 40% and 19% respectively compared to currently used titanium dental implants.

Kurzfassung

Die Verflechtung von Materialwissenschaften mit Biowissenschaften hat einige fortschrittliche Werkstoffe hervorgebracht, die sogenannten Gradientenwerkstoffe (Functionally Graded Materials, FGMs), um die benötigten Materialeigenschaften zu erreichen. Das Konzept der FGMs wurde 1984 in Japan im Rahmen eines Raumfahrtprogrammes begründet. FGMs sind Materialien oder Strukturen, in denen die Materialeigenschaften ortsbasiert in einer solchen Weise variieren, dass einige Funktionen über die gesamten FGMs optimiert werden können. Es ist bekannt, dass Hydroxyapatit (HAP) die hauptsächliche anorganische und Kollagen die hauptsächliche organische Komponente in natürlichen Knochen darstellt. Implantate aus Hydroxyapatit sind nicht bioabsorbierbar. Weil das Einwachsen von Knochen in und um künstlichen HAP nicht immer zufriedenstellend verläuft, können sich HAP-Implantate bei klinischen Anwendungen nach dem Einsetzen lockern oder brechen. Die Entwicklung eines neuen Werkstoffes, der bioabsorbierbar ist und eine osteokonduktive Aktivität aufweist, ist daher notwendig. Das Ziel der diesem Beitrag zugrunde liegenden Untersuchungen war es daher, ein Implantat zu entwerfen, das bei der Anwesenheit von Spongiosa diese in einer dünnen Lage von FGM umgibt. In der Studie wurde ein neues Kollagen/Hydroxyapatit (Col/HAP)-Biomaterial als FGM entwickelt, in dem die Finite Elemente-Methode und Optimierungstechniken eingesetzt wurden, die im ANSYS-Paket enthalten sind. Die entwickelten Materialien haben einen selbstorganiserenden Charakter, ähnlich dem natürlichen Knochen. Die Untersuchungen haben gezeigt, dass die maximalen Spannungen im kortikalen Knochen und in der Spongiosa bei einem Col/HAP-Gradientenwerkstoff um 40% bzw. 19% gegenüber derzeit verwendeten Titandentalimplantaten reduziert werden können.


Prof. Dr. Hassan S. Hedia, born 1959, is Professor for Materials and Solid Mechanics at the King Abdulaziz University, KSA. He achieved his BSc in 1981 at the Mechanical Engineering Department from the Cairo University, Egypt. In 1989, he received his MSc degree in Production Engineering at the Mansoura University in Egypt. In 1996, he was awarded his PhD degree from the Mechanical Engineering Department, Leeds University, UK and from the Mansoura University, Egypt, according to the respective channel system. His field of research interest is covering advanced materials, fracture mechanics, stress analysis and biomechanics.


References

1 W.Bonfield, M.Wang, K.E.Tanner: Interfaces in analogue biomaterials, Acta Materialia46 (1998), No. 7, pp. 2509251810.1016/S1359-6454(98)80035-9Search in Google Scholar

2 K.Katti, P.Gujjula: Control of Mechanical Responses In Insitu Polymer-Hydroxyapatite Composites for Bone replacement, Proc. of the 15th ASCE Engineering Mechanics Conference, Columbia University New York (2002)Search in Google Scholar

3 W.Suchanek, M.Yoshimura: Processing and properties of Hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of Materials Research13 (1998), No. 1, pp. 9411710.1557/JMR.1998.0015Search in Google Scholar

4 L.Reis Rui, M.Cunha António, J. Maria Oliveira Ana R.Campos, M. J.Bevis: Relationship between processing and mechanical properties of injection molded high molecular mass Polyethylene and Hydroxyapatite composites: Mat Res Innovat, 2001, No. 4, pp. 26327210.1007/s100190000103Search in Google Scholar

5 E.Jallot: Correlation between Hydroxyapatite osseointegration and Young's modulus, Medical Engineering and Physics, Vol. 20 (1998), pp. 697701Search in Google Scholar

6 S.Itoh, M.Kikuchi, Y.Koyama, H.Matsumoto, S.Ichinose, J.Tanaka, T.Kawauchi, K.Shinomiya: The biocompatibility and Osteoconductive Activity of a Novel Hydroxyapatite/collagen Composite Biomaterial, and its Function as a Carrier of BMP2. J Biomedical Material Research2000; 52: 44545310.1002/1097-4636(20010305)54:3<445::AID-JBM190>3.0.CO;2-9Search in Google Scholar

7 S.Suresh, A.Mortensen: Fundamentals of Functionally Graded Materials, American Mathematical Society, University press, Cambridge, UK (1998)Search in Google Scholar

8 R.Miyao, A.Yokoyama, F.Watari, T.Kawasaki: Properties of Titanium/Hydroxyapatite functionally graded implants by spark plasma sintering and their biocompatibility, J Dent Mate20 (2001), No. 6, pp. 344355Search in Google Scholar

9 P.Boughton, Dr. A.J.Ruys: A Ceramic-Polymer functionally graded material: A noval spinal disk prosthesis, http://www.materials.unsw.edu.au/http://www.mtm.kuleuven.ac.be/Research/C2/overview_of_materials_under_investigation/index.htmlSearch in Google Scholar

10 M.Nematt-Alla: Reduction of thermal stresses by developing two-dimensional functionally graded materials, Int J Solids Struct40 (2003), pp. 7339735610.1016/j.ijsolstr.2003.08.017Search in Google Scholar

11 H. S.Hedia: Effect of Coating thickness and its Material on the Stress distribution for Dental Implant, Journal of Medical Engineering & Technology31 (2007), No. 4, pp. 28028710.1080/03091900600861616Search in Google Scholar

12 H.S.Hedia, M.A.N.Shabara, T. T.El Midany, N.Fouda: A method of material optimization of cementless stem through functionally graded material, Int J Mech Mater Des (2005) 1, pp. 329346Search in Google Scholar

13 H.S.Hedia, M.Nemat-Alla: Design optimization of functionally graded dental implant: J. Bio-Medical Materials and Engineering14 (2004), No. 2, pp. 133143Search in Google Scholar

14 Kaya, A. C. F., P. F.Joseph: The crack problem in bonded non-homogeneous material, J. Appl. Mech.58 (1991), pp. 41041810.1115/1.2897201Search in Google Scholar

15 F.Erdogan, B. H.Wu: The surface crack problem for a plate with functionally graded properties, J. Appl. Mech.64 (1997), pp. 44945610.1115/1.2788914Search in Google Scholar

16 H. J.Choi: An analysis of cracking in a layered medium with a functionally graded non-homogenous interface, J. Appl. Mech.63 (1996), pp. 47948610.1115/1.2788893Search in Google Scholar

17 T.Fuchiyama, N.Noda, T.Tsuji, Y.Obata: Analysis of thermal stress and stress intensity factor of functionally gradient materials, I.B. Holt et al. (Eds.): Ceramic Transactions: Functionally Gradient Materials, American Ceramic Society, 34 (1993), pp. 425432Search in Google Scholar

18 T.Fujimoto, N.Noda: Multiple crack growths in the functionally graded plate under thermal shock, Proc. of the 4th Intern. Congress on Thermal Stresses (2001), pp. 121124Search in Google Scholar

19 M.Nemat-Alla: Reduction of thermal stresses by developing two-dimensional functionally graded materials, International Journal of Solids and Structures40 (2003), pp. 7339735610.1016/j.ijsolstr.2003.08.017Search in Google Scholar

20 E. H.Kerner: The elastic and thermo-elastic properties of composite media, Proceedings of the Physical Society Section B (1956), Volume: 69, Issue: 8, pp. 808813Search in Google Scholar

21 W.D.Kingery, H.Bowen, D. R.Uhlmann: Introduction of ceramics, John Wiley & Sons, New York (1976)Search in Google Scholar

22 S. E.Clif, J.Fisher, C. J.Watson: Stress and strain distribution in the bone surrounding a new design of dental implant: A comparison with a threaded Branemark type implant, Proc. Intn. Mech. Engrs., Part H: Journal of Engineering in Medicine207 (1993), pp. 13313810.1243/PIME_PROC_1993_207_285_02Search in Google Scholar PubMed

23 ANSYS User's Manual, Version 5.0A (1992)Search in Google Scholar

24 O. C.Zienkiewicz: The Finite Element Method, McGraw-Hill, London (1977)Search in Google Scholar

25 S. E.Clift, J.Fisher, C. J.Watson: Finite element stress and strain analysis of the bone surrounding a dental implant: Effect of variation of bone modulus, Proc. Intn. Mech. Engrs. Part H: Journal of Engineering in Medicine206 (1992), pp. 23324110.1243/PIME_PROC_1992_206_295_02Search in Google Scholar PubMed

26 H. S.Hedia: Stress and strain distribution behavior in the bone due to the effect of cancellous bone dental implant material and the bone height, J. Bio-medical Materials and Engineering 12(2002), No. 2, pp. 111120Search in Google Scholar

27 W. C.Hayes: Bone mechanics: from tissue mechanical properties to an assessment of structure behavior, G. W. Schonbein (Ed.): Frontiers of Bio-Mechanics, Springer, Berlin (1986), pp. 19620910.1007/978-1-4612-4866-8_15Search in Google Scholar

28 K.Brear, J. D.Currey, S.Raines, K. J.Smith: Density and temperature effects on some mechanical properties of cancellous bone, Engng. in Medicine17 (1988), pp. 16316710.1243/EMED_JOUR_1988_017_043_02Search in Google Scholar PubMed

29 R.Huiskes, D.Nunamaker: Local stresses and bone adaption around orthopaedic implants, Calcif. Tiss. Int. 361(1984), pp. 110117Search in Google Scholar

30 R.Huiskes: Biomechanics of bone implant interactions: In Frontiers of bio-mechanics, G. W. Schonbein (Ed.): Frontiers of Bio-Mechanics, Springer, Berlin (1986), pp. 24526210.1007/978-1-4612-4866-8_18Search in Google Scholar

31 W. C.Hayes: Bone mechanics: From tissue mechanical properties to an assessment of structure behavior, G. W. Schonbein (Ed.): Frontiers of Bio-Mechanics, Springer, Berlin (1986), pp. 19620910.1007/978-1-4612-4866-8_15Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2011-09-01

© 2011, Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110263/html
Scroll to top button