Kenaf Performance in PP/EVA/Clay Biocomposite
-
Siti Kamaruddin
Abstract
In this study, laminated Kenaf nanocomposites made from Kenaf fiber, Polypropylene (PP), organoclay, and Ethylene Vinyl Acetate (EVA) are fabricated with the combination of hand-layup and compression moulding technique. The effect of Kenaf fiber on properties of PP/EVA/clay biocomposite is investigated. The comparisons are made between the composite reinforced with Kenaf fiber and the composite without Kenaf fiber in terms of mechanical and thermal conductivity properties. Dynamic mechanical analysis (DMA) is carried out to examine the thermal mechanical properties of biocomposite samples. The surface fracture of laminated Kenaf nanocomposites is investigated by scanning electron microscopy (SEM). Results verify that Kenaf fibers have great potential to be used as an alternative to inorganic mineral-based reinforcing fibers.
Kurzfassung
In dieser Studie werden beschichtete Kenaf-Nanokomposite aus Kenaffaser, Polypropylen (PP), Organoton und Ethylenvinylacetat (EVA) durch die Kombination von manuellen Auflage- und Formpressverfahren hergestellt. Die Auswirkung der Kenaffaser auf die Eigenschaften des PP/EVA/Ton-Biokomposits wird untersucht. Es werden Vergleiche zwischen dem mit der Kenaffaser verstärkten Biokomposits und dem ohne Kenafverstärkung hinsichtlich der mechanischen und Wärmeleiteigenschaften gemacht. Eine dynamisch-mechanische Analyse (DMA) wird durchgeführt, um die thermisch-mechanischen Eigenschaften der Biokompositproben zu untersuchen. Die Oberflächenbrüche der beschichteten Kenaf-Nanokomposite werden mit Hilfe der Rasterelektronenmikroskopie (SEM) untersucht. Die Ergebnisse zeigen, dass Kenaffasern ein großes Potenzial besitzen, als Alternative zu anorganischen mineralischer Verstärkungsfasern verwendet zu werden.
References
1 J. J.Schemenauer, T. A.Osswald, A. R.Sanadi, D. F.Caulfield: Melt rheological properties of natural fiber-reinforcedPolypropylene, Proc. of the ANTEC 2000 Society of Plastic Engineers Conference 2 (2000), pp. 2206–2210Search in Google Scholar
2 A. K.Mohanty, M.Misra, G.Hinrichsen: Biofibers, biodegradable polymers and biocomposites: an overview, Macromol Mater Eng. 276/277 (2000), pp. 1–24Search in Google Scholar
3 J. P.Moreau, P.Bel-Berger, W. Y.Tao: Mechanical processing of Kenaf for nonwo-vens, TAPPI J.78 (1995), No. 2, pp. 96–105Search in Google Scholar
4 D. V.Parikh, T. A.Calamari, A. P. S.Sawhney, E. J.Blanchard, F. J.Screen: Improved chemical retting of Kenaf fibers, Text Res J.72 (2002), pp. 618–62410.1177/004051750207200709Search in Google Scholar
5 D. V.Parikh, T. A.Calamari, A. P. S.Sawhney, E. J.Blanchard, F. J.Screen: Thermoformable automotive composites containing Kenaf and other cellulosic fibers, Text Res J.72 (2002), pp. 668–67210.1177/004051750207200803Search in Google Scholar
6 M.Alexandre, P.Dubois: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater Sci Eng R.28 (2000), No. 2000-1, pp. 1–6310.1016/S0927-796X(00)00012-7Search in Google Scholar
7 Z.Wang, T. J.Pinnavaia: Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer, Chem Mater.10 (1998), No. 7, pp. 1820–182610.1021/cm970784oSearch in Google Scholar
8 Z. A.Mohd Ishak, U. S.Ishiaku, J.Karger-Kocsis: Hygrothermal aging and fracture behavior of short-glass-fiber reinforced rubber-toughened poly (butylene terephthalate) composites, Compos Sci Technol.60 (2000), pp. 803–81510.1016/S0266-3538(99)00193-1Search in Google Scholar
9 M. G.Bader, J. E.Bailey, P. T.Curtis: The stiffness and strength of a polyamide thermoplastic reinforced with glass and carbon fibers, Journal of Materials Science13 (1978), No. 2, pp. 377–39010.1007/BF00647783Search in Google Scholar
10 R. J.Gaymans: Toughened polyamides, A. A. Collyer (Ed.): Rubber Toughened Engineering Plastics, Chapman and Hall, London (1994), pp. 210–239Search in Google Scholar
11 M.Zampoli, F.Pourboghrat, S. A.Yankovich, B. N.Rodgers, J.Moore, L. T.Drzal, A. K.Mohanty, M.Misra: Kenaf natural fiber reinforced Polypropylene composites: A discussion on manufacturing problems and solution, Composites Part A38 (2007), No. 6, pp. 1569–158010.1016/j.compositesa.2007.01.001Search in Google Scholar
12 K.Joseph, S.Thomas, C.Pavithran: Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites, Polym Compos.37 (1996), No. 23, pp. 5139–5149Search in Google Scholar
13 R. M.Rowell, A.Sanadi, R.Jacobson, D.Caulfield: Properties of Kenaf/Polypropylene composites, T. Sellers Jr., N. A. Reichert (Eds.): Kenaf Properties, Processing and Products, Mississippi State University (1999), pp. 381–392Search in Google Scholar
14 J.Mirbagheri, M.Tajvidi, I.Ghasemi, J. C.Hermason: Prediction of the elastic modulus of wood flour/Kenaf fibre/Polypropylene hybrid composites, Iran Polym J.16 (2007), No. 4, pp. 271–278Search in Google Scholar
15 D. D.Rudolph: Polymer Structure, Properties and Application, Cahner Books, Massachusetts (1972)Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau