Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
-
Tomasz Topoliński
Abstract
The research method proposed in the paper assumes multi-level loads of trabecular bone, which are similar to the real ones and demonstrate a step-wise amplitude increase. Throughout the study, such loadings were applied to bone structures sampled from 61 donors. The samples were obtained after hip arthroplasty from the neck fragment of femur heads. All the samples were scanned with a desktop microtomographer. The fatigue damage of the sample structures throughout the experiments was seen in changes in the form of the hysteresis loop recorded in the stress-strain system. The dissipation energy, which is calculated based on the hysteresis loop, is present in the fatigue life function. A three-stage sample fatigue damage pattern was demonstrated. The sum of the dissipation energies was calculated for all the hysteresis loops, and thus we obtain the accumulated dissipation energy, which is referred to as the total fatigue life for all the samples. The calculation results were determined to have an exponential-like curve and reported a high value of the coefficient of determinacy. The accumulated dissipation energy is also related to the value of the compressive stress levels applied. Referring the calculated results of the accumulated energy to the structure index BV/TV, we identified the existence of a strong relationship between the quantities.
Kurzfassung
Die physiologische Beanspruchung von Knochen ist eine Art von wahllos variierenden Lasten, die im Labor als Einstufenversuch bedeutend vereinfacht werden können. Das in diesem Beitrag propagierte Verfahren geht von mehrstufigen Beanspruchungen aus, die den realen Beanspruchungen nahekommen und eine stufenweise Anhebung der Amplitude aufweisen. In dieser Studie wurden solche Beanspruchungen an Knochenstrukturen, die von 61 verschiedenen Personen stammten, aufgebracht. Alle Proben wurden mit einem Tisch-Mikro-CT gescannt. Dieser Test ergab die Werte von elf Basisknochenstrukturindizes. Die Knochenproben wurden in einer hydraulischen Prüfmaschine getestet. Die schrittweise erhöhte Druckbeanspruchung hatte eine sinusförmige Form. Die Ermüdungsschädigung der Strukturproben während der Versuche konnte anhand der Form der Hysteresisschleife erkannt werden, die in dem Spannung-Dehnungs-System aufgezeichnet wurde. Die Energiedissipation, die anhand der Hyseresisschleife berechnet wurde, ist in der Lebensdauerfunktion enthalten. Die Summe der Energiedissipationen wurde für alle Hystereseschleifen berechnet und ergibt die akkumulierte Energiedissipation, auf die für alle Proben als Gesamtlebensdauer Bezug genommen wurde. Die Berechnungsergebnisse wurden ermittelt, um eine Exponentialkurve zu erhalten und ergaben eine hohen Wert des Koeffizienten R2. Die akkumulierte Energiedissipation wird auch auf die Werte der Druckspannungsniveaus bezogen. Eine Analyse dieser Beziehung in normalisierten relativen Koordinaten beim Maximalwert zeigte eine Ähnlichkeit zur Prozessdynamik der Ermüdung der Proben, unabhängig von der Knochenstruktur. Unter Bezug der berechneten Ergebnisse der akkumulierten Energie auf den Strukturindex BV/TV wurde eine strenge Abhängigkeit zwischen den Größen festgestellt. Der in diesem Beitrag propagierte Versuch lässt sich schnell durchführen und ermöglicht es, Ergebnisse zu gewinnen, die auf die Knochenstrktur bezogen werden können, wenn als Kriterium die Energiedissipation gewählt wird.
References
1 J.Schijve: Fatigue of aircraft materials and structures, Int. J. of Fatigue16, (1994), pp. 21–3210.1016/0142-1123(94)90442-1Search in Google Scholar
2 J. J.Duga. The Economic Effects of Fracture in the United States, Part 2-A, Report to NBS by Battle Columbus Laboratories (1983)10.6028/NBS.SP.647p2Search in Google Scholar
3 D. R.Carter, W. C.Hayes: Fatigue life of compact bone – I: Effects of stress amplitude, temperature and density, J. Biomechanics9 (1976), pp. 27–3410.1016/0021-9290(76)90136-6Search in Google Scholar
4 J. F.Lafferty, P. V. V.Raju: The influence stress frequency on the fatigue strength of cortical bone, J Biomed Engng101 (1979), pp. 112–113Search in Google Scholar
5 D. R.Carter, W. C.Hayes: Compact bone fatigue damage – I: Residual strength and stiffness, J Biomech10 (1977), pp. 325–33710.1016/0021-9290(77)90005-7Search in Google Scholar
6 K.Winwood, P.Zioupos, J. D.Currey, J. R.Cotton, M.Taylor: Strain patterns during tensile, compressive, and shear fatigue of human cortical bone and implications for bone biomechanics, Journal of Biomedical materials research79 (2006), No. 2, pp. 289–297Search in Google Scholar
7 C. A.Pattin, W. E.Calert, D. R.Cartert: Cyclic mechanical property degradation during fatigue loading of cortical bone, Journal of Biomechanics29 (1996), No. 1, pp. 69–7910.1016/0021-9290(94)00156-1Search in Google Scholar
8 F.Linde, I.Hvid: Stiffness behaviour of trabecular bone specimens, J. Biomechanics20 (1987), pp. 83–8910.1016/0021-9290(87)90270-3Search in Google Scholar
9 M. C.Michel, X. E.Guo, L. J.Gibson, T. A.McMahon, W. C.Hayes: Compressive fatigue behavior of bovine trabecular bone, J Biomechanics26 (1993), No. 4/5, pp. 453–46310.1016/0021-9290(93)90009-4Search in Google Scholar
10 S. M.Haddock, O. C.Yeh, P. V.Mummaneni, W. S.Rosenberg, T. M.Keaveny: Similarity in the fatigue behavior of trabecular bone across site and species, Journal of Biomechanics37 (2004), No. 2, pp. 181–18710.1016/S0021-9290(03)00245-8Search in Google Scholar
11 T. A.Moore, L. J.Gibson: Fatigue of Bovine Trabecular Bone, J Biomechanics, 36 (2003), pp. 761–768Search in Google Scholar
12 K.Choi, S. A.Goldstein: A comparison of fatigue behavior of human trabecular and cortical bone tissue, J Biomech25 (1992), pp. 1371–138110.1016/0021-9290(92)90051-2Search in Google Scholar
13 J. E. M.Brouwers, M.Ruchelsman, B. v.Rietbergen, M. L.Bouxsein: Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats, Osteoporos Int. (2008), pp. 1377–1384Search in Google Scholar
14 L.Rapillard, M.Charlebois, P. K.Zysset: Compressive fatigue behavior of human vertebral trabecular bone, Journal of Biomechanics39 (2006), No. 11, pp. 2133–213910.1016/j.jbiomech.2005.04.033Search in Google Scholar PubMed
15 J. S.Nyman, A.Roy, M. J.Reyes, X.Wang: Progressive mechanical behavior human cortical bone in tension for two age groups, J Biomed Mater Res A89 (2009), No. 20, pp. 521–529Search in Google Scholar
16 X.Wang, J. S.Nyman: A novel approach to assess post-yield energy dissipation of bone in tension, J. Biomech40 (2007), No. 3, pp. 674–67710.1016/j.jbiomech.2006.02.002Search in Google Scholar
17 J. S.Nyman, H.Leng, X. N.Dong, X.Wang: Differences in the mechanical behavior cortical bone between compression and tension when subjected to progressive loading, Journal of the Mechanical Behavior of Biomedical Materials2 (2009), pp. 613–61910.1016/j.jmbbm.2008.11.008Search in Google Scholar
18 R. W.Landgraf, J.Morrow, T.Endo: Determination of the cyclic stress-strain curve, J. of Materials4 (1969), pp. 1621–1653Search in Google Scholar
19 W.Janzen. G. W.Ehrenstein: Bemessungsgrenzen von glasfaserverstärktem PBT bei schwingender Beanspruchung, Kunststoffe81 (1991), No. 3, pp. 231–236Search in Google Scholar
20 F.Orth, L.Hoffmann, H.Zilch-Bremer, G. W.Ehrenstein: Evaluation of composites under dynamic load, Composite Structure24 (1993), No. 53, pp. 265–27210.1016/0263-8223(93)90220-KSearch in Google Scholar
21 O.Zhang, J.Poirier, J. E.Barr: Modified location method in fatigue testing, Session: Fatigue Research & Applications (Part 1 & 2), Proc. of the SAE 2003 World Congress & Exhibition, Detroit, MI, USA (2003)10.4271/2003-01-0919Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau