Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
-
Hülya Durmuş
Abstract
For this study 5083 Aluminium alloy plates, as used in automobiles and watercraft, were experimentally MIG welded. The plates were joined with different wires and at various currents. The effects of welding with different parameters on the mechanical and corrosion properties were investigated. The corrosion behaviour of the MIG welded 5083 Aluminium base material was also investigated. The effects of the chemical composition of the filler material on the mechanical properties were examined by metallographic inspection and tensile testing. By EDS and XRD analyses of specimens it turned out that different structures in the weld metal (Cu3Si) affect its mechanical properties. The mechanical properties of the specimens welded with 5356 filler metal were found as quite well improved as compared to those specimens welded with 4043 and 5183 filler material. The results of the metallographic analysis, and mechanical and corrosion tests exhibited that the 5356 filler material was most suitable for the 5083 Al alloy base material.
Kurzfassung
Für die diesem Beitrag zugrunde liegende Studie wurden Bleche der Aluminiumlegierung 5083, die für Automobile und Wasserfahrzeuge verwendet werden, MIG-geschweißt. Die Bleche wurden mittels verschiedener Schweißdrähte und Stromstärken verbunden und die Wirkung der verschiedenen Parameter auf die mechanischen und die Korrosionseigenschaften ermittelt. Auch das Korrosionsverhalten des Grundwerkstoffes Al 5083 wurde untersucht. Die Wirkung der chemischen Zusammensetzung auf die mechanischen Eigenschaften wurde in metallographischen Untersuchungen und Zugversuchen bestimmt. Durch EDS- und XRD-Analysen stellte sich heraus, dass verschiedene Strukturen im Schweißgut (Cu3Si) die mechanischen Eigenschaften beeinflussen. Die mechanischen Eigenschaften der Proben ließen sich durch die Wahl des Schweißzusatzwerkstoffes 5356 gegenüber den mit den Zusatzwerkstoffen 4043 und 5183 geschweißten Proben verbessern. Die Ergebnisse der metallographischen Analysen und der Korrosionsversuche ergaben, dass der Zusatzwerkstoff 5356 der geeignetste für das MIG-Schweißen der Aluminiumlegierung 5083 ist.
References
1 Y.Totik, R.Sadeler, I.Kaymaz, M.Gavgali: The effect of homogenization treatment on cold deformations of AA 2014 and AA 6063 alloys, Materials Processing Technology147 (2004), pp. 60–6410.1016/j.jmatprotec.2003.10.026Search in Google Scholar
2 J. X.Liao, L. F.Xia, M. R.Sun, W. M.Liu, T.Xu, Q. J.Xue: The tribological properties of gradient layer prepared by plasma-based ion implantation on 2024 Aluminium alloy, Surface and Coatings Technology183 (2004), pp. 157–16410.1016/j.surfcoat.2003.10.003Search in Google Scholar
3 M.Taskin, U.Caligulu, A. K.Gur: Modeling adhesive wear resistance of Al-Si-Mg-/SiCp PM compacts fabricated by hot pressing process by means of ANN, International Journal of Advanced Manufacturing Technology37 (2008), pp. 715–72110.1007/s00170-007-1000-5Search in Google Scholar
4 T.Hirata, T.Oguri, H.Hagino, T.Tanaka, S. W.Chung, Y.Takigawa, K.Higashi: Influence of friction stir welding parameters on grain size and formability in 5083 Aluminium alloy, Materials Science and Engineering A456 (2007), pp. 344–34910.1016/j.msea.2006.12.079Search in Google Scholar
5 http://www.furukawa.co.jp/review/fr026/fr26_14.pdfSearch in Google Scholar
6 S. J.Hosseinipour: An investigation into hot deformation of Aluminium alloy 5083, Materials & Design30 (2009), No. 2, pp. 319–322Search in Google Scholar
7 C. N.Panagopoulos, E. P.Georgiou: Cold rolling and lubricated wear of 5083 Aluminium alloy, Materials & Design31 (2010), No. 3, pp. 1050–105510.1016/j.matdes.2009.09.056Search in Google Scholar
8 S.Katsas, J.Nikolaou, G.Papadimitriou: Microstructural changes accompanying repair welding in 5xxx Aluminium alloys and their effects on the mechanical properties, Materials and Design27 (2006), pp. 968–97510.1016/j.matdes.2005.02.012Search in Google Scholar
9 C.Menzemer, T. S.Srivatsan: The quasi-static fracture behavior of Aluminium alloy 5083, Materials Letters38 (1999), pp. 317–32010.1016/S0167-577X(98)00175-XSearch in Google Scholar
10 S.Lin, Z.Nie, H.Huang, B.Li: Annealing behavior of a modified 5083 Aluminium alloy, Materials & Design31 (2010), No. 3, pp. 1607–161210.1016/j.matdes.2009.09.004Search in Google Scholar
11 H.Wu: Influence of deformation variables on cavitation of a superplastic 5083 Aluminium alloy, Materials and Manufacturing Processes15 (2000), No. 2, pp. 231–24510.1080/10426910008912985Search in Google Scholar
12 R.Kaçar, K.Kökemli: Effect of controlled atmosphere on the MIG-MAG arc weldment properties, Materials & Design66 (2005), No. 26, pp. 508–516Search in Google Scholar
13 S.Zielinska, F.Valensi, N.Pellerin, S.Pellerin, K.Musiol, Ch.De Izarra, F.Briad: Microstructural analysis of the anode in Gas Metal Arc Welding (GMAW), Journal of Materials Processing Technology209 (2009), pp. 3581–359110.1016/j.jmatprotec.2008.08.023Search in Google Scholar
14 J. P.Ganjigatti, D. K.Pratihar, A. R.Choudhury: Global versus cluster-wise regression analyses for prediction of bead geometry in MIG welding process, Journal of Materials Processing Technology189 (2007), pp. 352–36610.1016/j.jmatprotec.2007.02.006Search in Google Scholar
15 S.Maggiolino, C.Schmid: Corrosion resistance in FSW and in MIG welding techniques of AA6XXX, Journal of Materials Processing Technology197 (2008), pp. 237–24010.1016/j.jmatprotec.2007.06.034Search in Google Scholar
16 T.Yuri, T.Ogata, M.Saito, Y.Hirayama: Effect of welding structure on high cycle and low cycle fatigue properties for MIG welded A5083 Aluminium alloys at cryogenic temperatures, Cryogenics41 (2001), pp. 475–48310.1016/S0011-2275(01)00100-XSearch in Google Scholar
17 M.Ericsson, R.Sandström: Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG, International Journal of Fatigue25 (2003), pp. 1379–138710.1016/S0142-1123(03)00059-8Search in Google Scholar
18 K.Shankar, W.Wu: Effect of welding and weld repair on crack propagation behavior in Aluminium alloy 5083 plates, Materials and Design23 (2002), No. 2, pp. 201–20810.1016/S0261-3069(01)00059-0Search in Google Scholar
19 http://www.gedikwelding.com/TR/Categories.php?CatId=9&SubId=1#cat-83Search in Google Scholar
20 E.Taban, E.Kaluç: Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083-H321 Aluminium alloy, Kovove Mater.44 (2006), pp. 25–33Search in Google Scholar
21 E.Taban, E.Kaluç: Comparison between microstructure characteristics and joint performance of 5086-H32 Aluminium alloy welded by MIG, TIG and friction stir welding processes, Kovove Mater., 45 (2007), pp. 241–248Search in Google Scholar
22 R.Falster: proceedings of the satellite symposium to ESSDERC 93 Grenoble, Electrochemical Society Proceedings, Volume 93-15, Ed. by BO Kolbesen, P Stallhofer, Cor Claeys and F Tardif (1993), p. 149Search in Google Scholar
23 S.-J.Kim; S.-K.Kim; J.-C.Park: The Corrosion and Mechanical Properties of Al alloy 5083-H116 in Metal Inert Gas Welding Based on Slow Strain Rate Test, in: Surface and Coatings Technology 205, 1 (2010), pp. 73–7810.1016/j.surfcoat.2010.04.039Search in Google Scholar
24 S.Lin, Z.Nie, H.I.Huang, B.Li: Annealing behavior of a modified 5083 Aluminium alloy Materials and Design31 (2010), pp. 1607–1612Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau