Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
-
Łukasz Blacha
Abstract
Welded joints submitted to variable loadings are, by their nature, experiencing a stress concentration resulting from the presence of a complex notch effect relating to geometrical and structural features of the joint. In the finite element method, modelling of the weld toe as a sharp notch reveals a non-linear relation of stresses dependent on the mesh density. In this paper, an approach for determination of the notch radius in a welded part was proposed, based on the application of finite element calculations with a non-linear elastic-plastic body model under employment of the linear hardening rule. The derived stresses are used in calculations of fatigue life, carried out according to algorithms provided for structural elements without the presence of welds.
Kurzfassung
Schweißverbindungen, die variablen Beanspruchungen unterworfen sind, erfahren naturgemäß eine Spannungskonzentration, die aus der Anwesenheit von komplexen Kerbwirkungen infolge der geometrischen und strukturellen Eigenschaften der Verbindung resultieren. In der Finite-Elemente-Modellierung ergibt die Modellierung der Nahtwurzel als scharfe Kerbe eine nicht- lineare Beziehung der Spannungen, abhängig von der Netzdichte. Im vorliegenden Beitrag wird ein Ansatz für die Bestimmung des Kerbradius in einem geschweißten Teil propagiert, der auf der Anwendung von Finite-Elemente-Berechnungen mit einem nicht-linearen elastisch-plastischen Volumenmodell unter Einbeziehung des linearen Verfestigungsgesetzes basiert. Die bestimmten Spannungen werden in Berechnungen der Lebensdauer verwendet, die wie die Algorithmen ausgeführt werden, wie sie für Strukturelemente ohne Schweißverbindungen gelten.
References
1 A.Hobbacher: Recomendations for fatigue design of welded joint and components, IIW document XIII-2151-07/XV-1254-07 (2007)Search in Google Scholar
2 W.Fricke, A.Kahl: Comparison of different structural stress approaches for fatigue assessment of welded ship structures, Marine Structures18 (2005), pp. 473–48810.1016/j.marstruc.2006.02.001Search in Google Scholar
3 British Standard BS 7608:1993: Code of Practice for Fatigue Design and Assessment of Steel Structures, BSI, London (1993)Search in Google Scholar
4 Eurocode 3: Design of Steel Structures – Part 1-1: General Rules for Buildings, ENV 1993-1-1, European Committee for Standardisation, Brussels (1992)Search in Google Scholar
5 Japanese Society of Steel Construction (JSSC): Fatigue Design Recommendations for Steel Structures [English Version], JSSC Technical Report No. 32, JSSC, Tokyo (1995)Search in Google Scholar
6 Z.-G.Xiao, K.Yamada: A method of determining geometric stress for fatigue strength evaluation of steel welded joints, International Journal of Fatigue26 (2004), pp. 1277–129310.1016/j.ijfatigue.2004.05.001Search in Google Scholar
7 C. M.Sonsino, H.Kaufmann, G.Demofonti, S.Rifisculi, G.Sedlacek, C.Müller, F.Hanus, H. G.Wegmann: High-Strength Steels in Welded State for Light-Weight Constructions Under High and Variable Stress Peaks, ESCC Steel Research Programme, European Commission, Brussels (1999)Search in Google Scholar
8 MSC/PATRAN, MSC. The MacNeal-Schwendler Corporation, Version 2005Search in Google Scholar
9 Z. P.Bazant; D.Novak: Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect - I: Theory, Journal of Engineering Mechanics126 (2000), No. 2, pp. 166–7410.1061/(ASCE)0733-9399(2000)126:2(166)Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Fatigue Criterion Based on the Novoshilov Criterion for Non-proportional Loadings*
- The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
- Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
- Fatigue Energy Dissipation in Trabecular Bone Samples with Stepwise-Increasing Amplitude Loading*
- Damage Identification in Strongly Loaded Carbon-Reinforced Composite Using the Electric Resistance Change Procedure*
- Mechanical Properties and Corrosion Behaviour of MIG Welded 5083 Aluminium Alloy
- Kenaf Performance in PP/EVA/Clay Biocomposite
- Topology Optimization for a Micro/Nano Compliant Grip and Move with Parallel Movement Tips Using Multi-Objective Compliance
- Modelling and Experimental Study of Mechanical Behaviour of Walls Produced by Different Knitting
- Vorschau/Preview
- Vorschau