Home Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*
Article
Licensed
Unlicensed Requires Authentication

Modelling of Stresses in Welded Joints Under Consideration of Plastic Strains in Fatigue Life Calculations*

  • Łukasz Blacha , Aleksander Karolczuk and Tadeusz Łagoda
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

Welded joints submitted to variable loadings are, by their nature, experiencing a stress concentration resulting from the presence of a complex notch effect relating to geometrical and structural features of the joint. In the finite element method, modelling of the weld toe as a sharp notch reveals a non-linear relation of stresses dependent on the mesh density. In this paper, an approach for determination of the notch radius in a welded part was proposed, based on the application of finite element calculations with a non-linear elastic-plastic body model under employment of the linear hardening rule. The derived stresses are used in calculations of fatigue life, carried out according to algorithms provided for structural elements without the presence of welds.

Kurzfassung

Schweißverbindungen, die variablen Beanspruchungen unterworfen sind, erfahren naturgemäß eine Spannungskonzentration, die aus der Anwesenheit von komplexen Kerbwirkungen infolge der geometrischen und strukturellen Eigenschaften der Verbindung resultieren. In der Finite-Elemente-Modellierung ergibt die Modellierung der Nahtwurzel als scharfe Kerbe eine nicht- lineare Beziehung der Spannungen, abhängig von der Netzdichte. Im vorliegenden Beitrag wird ein Ansatz für die Bestimmung des Kerbradius in einem geschweißten Teil propagiert, der auf der Anwendung von Finite-Elemente-Berechnungen mit einem nicht-linearen elastisch-plastischen Volumenmodell unter Einbeziehung des linearen Verfestigungsgesetzes basiert. Die bestimmten Spannungen werden in Berechnungen der Lebensdauer verwendet, die wie die Algorithmen ausgeführt werden, wie sie für Strukturelemente ohne Schweißverbindungen gelten.


*

Extended version of the contribution for the Symposium on Fatigue Failure and Fracture Mechanics

MSc. Lukasz Blacha, born 1984, is a doctoral student at the Department of Mechanics and Machine Design at the Opole University of Technology. He graduated in Mechanical Engineering, and gained his industrial experience during the served internship as a FEA engineer at DELPHI Technical Center in Kraków, Poland.

Prof. Aleksander Karolczuk, born 1974, is currently an Associated Professor at the Opole University of Technology in Poland. He is the coauthor of one book (published by VDI Verlag 2005), and numerous papers and conference presentations devoted to various aspects of fatigue of materials. His works concern especially multiaxial fatigue failure criteria based on the critical plane approach, non-local methods and models of material hardening.

Prof. Tadeusz Łagoda, born 1965, is Head of Department of Mechanics and Machine Design at the Opole University of Technology. His works concern especially multiaxial random fatigue and criteria based on the critical plane approach and fatigue of welding joint. He is author and coauthor of more then 250 papers and monographs. The last one is: T. Agoda: Lifetime Estimation of Welded Joints, Springer Verlag 2008.


References

1 A.Hobbacher: Recomendations for fatigue design of welded joint and components, IIW document XIII-2151-07/XV-1254-07 (2007)Search in Google Scholar

2 W.Fricke, A.Kahl: Comparison of different structural stress approaches for fatigue assessment of welded ship structures, Marine Structures18 (2005), pp. 47348810.1016/j.marstruc.2006.02.001Search in Google Scholar

3 British Standard BS 7608:1993: Code of Practice for Fatigue Design and Assessment of Steel Structures, BSI, London (1993)Search in Google Scholar

4 Eurocode 3: Design of Steel Structures – Part 1-1: General Rules for Buildings, ENV 1993-1-1, European Committee for Standardisation, Brussels (1992)Search in Google Scholar

5 Japanese Society of Steel Construction (JSSC): Fatigue Design Recommendations for Steel Structures [English Version], JSSC Technical Report No. 32, JSSC, Tokyo (1995)Search in Google Scholar

6 Z.-G.Xiao, K.Yamada: A method of determining geometric stress for fatigue strength evaluation of steel welded joints, International Journal of Fatigue26 (2004), pp. 1277129310.1016/j.ijfatigue.2004.05.001Search in Google Scholar

7 C. M.Sonsino, H.Kaufmann, G.Demofonti, S.Rifisculi, G.Sedlacek, C.Müller, F.Hanus, H. G.Wegmann: High-Strength Steels in Welded State for Light-Weight Constructions Under High and Variable Stress Peaks, ESCC Steel Research Programme, European Commission, Brussels (1999)Search in Google Scholar

8 MSC/PATRAN, MSC. The MacNeal-Schwendler Corporation, Version 2005Search in Google Scholar

9 Z. P.Bazant; D.Novak: Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect - I: Theory, Journal of Engineering Mechanics126 (2000), No. 2, pp. 1667410.1061/(ASCE)0733-9399(2000)126:2(166)Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110234/html?lang=en
Scroll to top button