Home The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*
Article
Licensed
Unlicensed Requires Authentication

The Dynamics of Loading and Growth of Fatigue Cracks in the Proximity to Rolling Contact of Elements with Defects on Their Surface*

  • Mariusz Pietrzyk and Stanisław Bogdański
Published/Copyright: May 28, 2013
Become an author with De Gruyter Brill

Abstract

This paper highlights the analysis of the development of fatigue cracks under loading in the region of rolling contact. A surface defect is taken as an irregularity of a convex circular profile on an otherwise regular contact track, on which a rolling element is moving. 2D numerical models with different lengths of cracks were analysed. The results provided an estimation of the influence of the irregularity height and the length of a crack on the stress intensity factors (SIF) at the crack tip, and, as a consequence, on the crack growth rate and direction. A simplified model of contact was used in which the rolling element was replaced by the distribution of displacements equivalent to its interaction. It was assumed that an element in a contact pair having a large mass and moving with a high velocity would not deviate from its initial path while rolling over the irregularity on the track. This allowed the dynamic contact interaction and corresponding crack tip loading to be estimated, despite the use of a quasi—static model for the analyses.

Kurzfassung

Der vorliegende Beitrag bezieht sich auf die Analyse der Entwicklung von Ermüdungsrissen unter Beanspruchung in der Region von Rollkontakt. Als Oberflächendefekt wurde eine Unregelmäßigkeit in einem konvexen kreisförmigen Profil angenommen, auf einem ansonsten regulärem Gleis, auf sich dem ein rollendes Element bewegt. Numerische 2D-Modelle mit verschiedenen Risslängen wurden analysiert. Die Ergebnisse ermöglichten eine Abschätzung des Einflusses der Höhe und Länge dieser Unregelmäßigkeit auf den Spannungsintensitätsfaktor (SIF) an der Rissspitze und daraus resultierend auf das Risswachstum und die Rissrichtung. Ein vereinfachtes Kontaktmodell wurde angewendet, in dem das rollende Element durch die Verteilung der Verschiebungen äquivalent zu seiner Wechselwirkung ersetzt wurden. Es wurde angenommen, dass ein Element im Kontaktpaar, das eine große Masse aufweist und sich mit hoher Geschwindigkeit bewegt, nicht von seinem urprünglichen Pfad abweicht, wenn es über die Unregelmäßigkeit auf dem Gleis rollt. Dies erlaubte es, die dynamische Kontaktwechselwirkung und die entsprechende Beanspruchung an der Rissspitze abzuschätzen, trotz der Verwendung eines quasi-statischen Modells in den Analysen.


*

Extended version of the contribution for the Symposium on Fatigue Failure and Fracture Mechanics

Prof. Stanisław Bogdański graduated at the Department of Power and Aeronautical Engineering, Warsaw University of Technology in 1971. He achieved his PhD at the Department of Power and Aeronautical Engineering at the Warsaw University of Technology under the topic of tribology in 1980. His habilitation thesis in 1999 has the title: The growth of fatigue cracks in the presence of fluid under rolling/sliding contact load. He is currently Professor of Mechanical Engineering and Head of the Fundamentals of Machine Design Division at The Institute of Aeronautics and Applied Mechanics at the Warsaw University of Technology. His fields of scientific interest are mechanical engineering, machnine design, contact mechanics, tribology, fatigue, and fracture of components and structures.

M. Sc. Mariusz Pietrzyk graduated at the Department of Power and Aeronautical Engineering, Warsaw University of Technology about contact mechanics in 2009. He is presently Assistant in Fundamentals of Machine Design Division at The Institute of Aeronautics and Applied Mechanics. His scientific field of interest is contact mechnics.


References

1 L. M.Keer, M. D.Bryant: A pitting model for rolling contact fatigue, J. Trib. Trans. ASME (1983, pp. 19820510.1115/1.3254565Search in Google Scholar

2 D. F.Cannon, H.Pradier: Rail rolling contact fatigue — Research by the European Rail Research Institute, Wear191 (1996), pp. 11310.1016/0043-1648(95)06650-0Search in Google Scholar

3 M.Kaneta, K.Matsuda, K.Murakami, H.Nashikawa: A possible mechanism for rail spot defects, J. Trib. Trans. ASME120 (1998), pp. 30430910.1115/1.2834426Search in Google Scholar

4 S.Bogdan´ski, M. W.Brown: Modelling the three-dimensional behaviour of shallow rolling contact fatigue cracks in rails, Wear253 (2002), No. 2002-1, pp. 172510.1016/S0043-1648(02)00078-9Search in Google Scholar

5 K.Van Dang, M. H.Maitournam: Rolling contact in railways: Modelling, simulation and damage prediction, Fatigue Fract. Engng Mater. Struct.26 (2003), pp. 93994810.1046/j.1460-2695.2003.00698.xSearch in Google Scholar

6 S.L.Grassie, J.Kalousek: Rolling contect fatigue of rails, Procs of 6th International Heavy Haul Railway Conference, Cape Town (1997), pp. 381404Search in Google Scholar

7 S.Bogdan´ski: Predicting the growth of RCF crack with the use of 3D multi-size finite element mode, D. Dowson et al. (Eds.): Life Cycle Tribology, Elsevier - Tribology and Interface Engineering Series No.48 (2005), pp. 70972110.1016/S0167-8922(05)80073-2Search in Google Scholar

8 S.Bogdan´ski, M.Trajer: A dimensionless, multi-size finite element model of a rolling contact fatigue crack, Wear258 (2005), No. 2005-7, pp. 1265127210.1016/j.wear.2004.03.036Search in Google Scholar

9 S.Bogdan´ski, P.Lewicki: 3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails, Wear265 (2008), No. 2008-9, pp. 1356136210.1016/j.wear.2008.03.014Search in Google Scholar

10 S.Bogdan´ski, M.Pietrzyk: The behaviour of squat-type cracks under quasi-static and dynamic loading, Proceedings of the 8th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM — 2009, Florence (2009) Vol. I, pp. 2122Search in Google Scholar

11 Z.Li, X.Zhao, C.Esveld, R.Dollevoet, M.Molodova: An investigation into causes of squats – Correlation analysis and numerical modelling, Wear265 (2008), No. 2008-9, pp. 1349135510.1016/j.wear.2008.02.037Search in Google Scholar

12 J. S.Solecki: Fracture Mechanics. ANSYS® Revision 4.4 Tutorial, Swanson Analysis Systems, Inc., Philadelphia, USA (1989)Search in Google Scholar

13 A. R.Ingraffea, P. A.Wawrzynek: Finite Element Methods for Linear Elastic Fracture Mechanics, Elsevier Science Ltd. Oxford, England (2003)10.1016/B0-08-043749-4/03007-XSearch in Google Scholar

14 C.H.Wang, M. W.Brown: Life prediction techniques for variable amplitude multiaxial fatigue, Parts I and II, Journal of Engineering Materials and Technology, Transactions of ASME118 (1996), pp. 36737410.1115/1.2826894Search in Google Scholar

Published Online: 2013-05-28
Published in Print: 2011-06-01

© 2011, Carl Hanser Verlag, München

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110233/html
Scroll to top button