Home Physical Sciences Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide
Article
Licensed
Unlicensed Requires Authentication

Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide

  • Petra Holínková and Miloslav Pekař
Published/Copyright: July 13, 2019
Become an author with De Gruyter Brill

Abstract

The aggregation behaviour of the cationic surfactant carbethopendecinium bromide (Septonex) and cetyltrimethylammonium bromide (CTAB) in aqueous solution was investigated by steady-state and time-resolved fluorescence experiments. Values of critical micelle concentration were obtained from the pyrene emission polarity index. The micellar aggregation numbers for four different concentrations of both surfactants were determined by steady-state and time-resolved fluorescence quenching methods, using pyrene as a probe and cetylpyridinium chloride as a quencher. The results obtained for Septonex were compared with the aggregation parameters of CTAB. Generally, Septonex micelles were formed by a smaller number of surfactant monomers than in the case of CTAB and the critical micelle concentration of Septonex is lower than that of CTAB. Also, the concentration dependence of the micelle aggregation number was found.

Kurzfassung

Das Aggregationsverhalten des kationischen Tensids Carbethopendeciniumbromid (Septonex) und Cetyltrimethylammoniumbromid (CTAB) in wässriger Lösung wurde in stationären und zeitaufgelösten Fluoreszenzexperimenten untersucht. Die Werte der kritischen Mizellenbildungskonzentration wurden aus dem Pyrenemissionspolaritätsindex erhalten. Die mizellaren Aggregationszahlen für vier verschiedene Konzentrationen der beiden Tenside wurden durch ein stationäres und zeitaufgelöstes Fluoreszenzlöschverfahren unter Verwendung von Pyren als Sonde und Cetylpyridiniumchlorid als Quencher bestimmt. Die für Septonex erhaltenen Ergebnisse wurden mit den Aggregationsparametern von CTAB verglichen. Im Allgemeinen wurden Septonex-Mizellen durch eine geringere Anzahl von Tensidmonomeren gebildet als im Fall von CTAB und die kritische Mizellenbildungskonzentration von Septonex ist niedriger als die von CTAB. Auch die Konzentrationsabhängigkeit der Mizellenaggregationszahl wurde gefunden.


Correspondence address, Prof. Dr. Miloslav Pekař, Materials Research Centre, Faculty of Chemistry, Brno University of Technology Purkyňova 464/118, Brno 612 00, Czech Republic, Tel: +420541149330, Fax: +420541211697, E-Mail:

Petra Holínková received her MSc. degree in applied chemistry from Brno University of Technology where she is finishing her PhD study aimed at investigation of surfactant-hyaluronan interactions by fluorescence techniques.

Miloslav Pekař received his MSc. and PhD. degree in organic technology from the University of Chemical Technology, Prague. Currently, he is professor of physical chemistry at Brno University of Technology and his research interests include surfactant-polyelectrolyte interactions.


References

1. Greksáková, O., Oremusová, J., Vojteková, M. and Kopecký, F.: Spectrophotometric study of the effect of univalent electrolytes on critical micelle concentrations of [1-(ethoxycarbonyl)pentadecyl]trimethylammonium, 1-hexadecylpyridinium, and dimethylbenzyldodecylammonium bromides. Chem. Papers48 (1994) 300305; DOI: does not exist.Search in Google Scholar

2. Čermáková, L., Rosendorfová, J. and Malát, M.: Determination of critical micelle concentration of 1-carbethoxypentadecyltrimethylammonium bromide. Collect. Czech. Chem. Commun.45 (1980) 210213. 10.1135/cccc19800210Search in Google Scholar

3. Oremusová, J. and Greksáková, O.: Micellization parameters of cationic surfactants consisting of the [1-(ethoxycarbonyl)-pentadecyl]-trimethylammonium ion and various anions. Tenside, Surfactants, Deterg.40 (2003) 3539; DOI: does not exist.Search in Google Scholar

4. Vojteková, M., Kopecký, F., Greksáková, O. and Oremusová, J.: Effect of Addition of KX Type Electrolytes and Temperature on the Critical Micellar Concentrations of 1-Cetylpyridinium and Carbethopendecinium Bromides. Collect. Czech. Chem. Commun.59 (1994) 99105. 10.1135/cccc19940099Search in Google Scholar

5. Pavlíková, M., Lacko, I., Devínský, F. and Mlynarčík, D.: Quantitative Relationships Between Structure, Aggregation Properties and Antimicrobial Activity of Quaternary Ammonium Bolaamphiphiles. Collect. Czech. Chem. Commun.60(1995) 12131228. 10.1135/cccc19951213Search in Google Scholar

6. Hansson, P., Jönsson, B., Ström, C. and Söderman, O.: Determination of Micellar Aggregation Numbers in Dilute Surfactant Systems with the Fluorescence Quenching Method. J. Phys. Chem. B104 (2000) 34963506. 10.1021/jp992444rSearch in Google Scholar

7. Kalyanasundaram, K. and Thomas, J.: Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc.99 (1977) 20392044. 10.1021/ja00449a004Search in Google Scholar

8. Dominguez, A., Fernandez, A., Gonzalez, N., Iglesias, E. and Montenegro, L.: Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques. J. Chem. Educ.74 (1997) 2271231. 10.1021/ed074p1227Search in Google Scholar

9. Piñeiro, L., Novo, M. and Al-Soufi, W.: Fluorescence emission of pyrene in surfactant solutions. Adv. Colloid Interface Sci.215 (2015) 112. PMid:25466688; 10.1016/j.cis.2014.10.010Search in Google Scholar

10. Aguiar, J., Carpena, P., Molina-Bolıívar, J. and Carnero Ruiz, C.: On the determination of the critical micelle concentration by the pyrene 1: 3 ratio method. J. Colloid Interface Sci.258 (2003) 116122. 10.1016/S0021-9797(02)00082-6Search in Google Scholar

11. Ray, G., Chakraborty, I., Ghosh, S., Moulik, S. and Palepu, R.: Self-Aggregation of Alkyltrimethylammonium Bromides (C 10-, C 12-, C 14-, and C 16 TAB) and Their Binary Mixtures in Aqueous Medium: A Critical and Comprehensive Assessment of Interfacial Behavior and Bulk Properties with Reference to Two Types of Micelle Formation. Langmuir21 (2005) 1095810967. PMid:16285759; 10.1021/la051509gSearch in Google Scholar PubMed

12. Dar, A., Garai, A., Das, A. and Ghosh, S.: Rheological and Fluorescence Investigation of Interaction between Hexadecyltrimethylammonium Bromide and Methylcellulose in the Presence of Hydrophobic Salts. J. Phys. Chem. A114 (2010) 50835091. PMid:20353190; 10.1021/jp911545jSearch in Google Scholar PubMed

13. Zana, R., Frasch, J., Soulard, M., Lebeau, B. and Patarin, J.: Fluorescence Probing Investigations of the Mechanism of Formation of Organized Mesoporous Silica. Langmuir15 (1999) 26032606. 10.1021/la981603fSearch in Google Scholar

14. Vethamuthu, M., Almgren, M., Mukhtar, E. and Bahadur, P.: Fluorescence quenching studies of the aggregation behavior of the mixed micelles of bile salts and cetyltrimethylammonium halides. Langmuir8 (1992) 23962404. 10.1021/la00046a010Search in Google Scholar

15. Moulik, S., Haque, M., Jana, P. and Das, A.: Micellar Properties of Cationic Surfactants in Pure and Mixed States. J. Phys. Chem.100 (1996) 701708. 10.1021/jp9506494Search in Google Scholar

16. Frindi, M., Michels, B. and Zana, R.: Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group. J. Phys. Chem.96 (1992) 81378141. 10.1021/j100199a058Search in Google Scholar

17. Regev, O. and Zana, R.: Aggregation Behavior of Tyloxapol, a Nonionic Surfactant Oligomer, in Aqueous Solution. J. Colloid Interface Sci.210 (1999) 817. PMid:9924103; 10.1006/jcis.1998.5776Search in Google Scholar

18. Li, W., Han, Y., Zhang, J. and Wang, B.: Effect of ethanol on the aggregation properties of cetyltrimethylammonium bromide surfactant. Colloid J.67 (2005) 159163. 10.1007/s10595-005-0075-7Search in Google Scholar

19. Zana, R., Binana-Limbele, W., Kamenka, N. and Lindman, B.: Ethyl(hydroxyethyl)cellulose-cationic surfactant interactions: electrical conductivity, self-diffusion and time-resolved fluorescence quenching investigations. J. Phys. Chem.96 (1992) 54615465. 10.1021/j100192a050Search in Google Scholar

20. Bhattacharya, S., Das, H. and Moulik, S.: Quenching of fluorescence of 2-anthracene sulphonate by cetylpyridinium chloride in micellar solutions of Tweens, Triton X-100, sodium dodecylsulphate (SDS) and cetyltrimethylammonium bromide (CTAB). J. Photochem. Photobiol. A71 (1993) 257262. 10.1016/1010-6030(93)85007-USearch in Google Scholar

21. Alargova, R., Kochijashky, I., Sierra, M. and Zana, R.: Micelle Aggregation Numbers of Surfactants in Aqueous Solutions: A Comparison between the Results from Steady-State and Time-Resolved Fluorescence Quenching. Langmuir14 (1998) 54125418. 10.1021/la980565xSearch in Google Scholar

22. Infelta, P., Gratzel, M. and Thomas, J.: Luminescence decay of hydrophobic molecules solubilized in aqueous micellar systems. Kinetic model. J. Phys. Chem.78 (1974) 190195. 10.1021/j100595a021Search in Google Scholar

23. Tachiya, M.: Application of a generating function to reaction kinetics in micelles. Kinetics of quenching of luminescent probes in micelles. Chem. Phys. Lett.33 (1975) 289292. 10.1016/0009-2614(75)80158-8Search in Google Scholar

24. Oremusová, J., Vitková, Z. and Herdová, P.: Influence of Alcohols on Micellar and Release Balances of Cationic Surfactant – Carbethopendecinium Bromide (Septonex). Tenside Surf. Det.51 (2014) 339347 (2014). 10.3139/113.110316Search in Google Scholar

25. Fuguet, E., Ràfols, C., Rosés, M. and Bosch, E.: Critical micelle concentration of surfactants in aqueous buffered and unbuffered systems. Anal. Chim. Acta548 (2005) 95100. 10.1016/j.aca.2005.05.069Search in Google Scholar

26. Modaressi, A., Sifaoui, H., Grzesiak, B., Solimando, R., Domanska, U. and Rogalski, M.: CTAB aggregation in aqueous solutions of ammonium based ionic liquids; conductimetric studies. Colloids Surf. A296 (2007) 104108. 10.1016/j.colsurfa.2006.09.031Search in Google Scholar

27. Lakowicz, J. R.: Principles of fluorescence spectroscopy. 3rd Edition. Springer, Berlin (2006). 10.1007/978-0-387-46312-4Search in Google Scholar

Received: 2019-01-04
Accepted: 2019-04-12
Published Online: 2019-07-13
Published in Print: 2019-07-17

© 2019, Carl Hanser Publisher, Munich

Articles in the same Issue

  1. Contents/Inhalt
  2. Contents
  3. Review Article
  4. Review on Silicone Surfactants: Silicone-based Gemini Surfactants, Physicochemical Properties and Applications
  5. Cleaning Agents
  6. Evaluation of Ethoxylated Rapeseed Oil Fatty Acids Methyl Esters as Nonionic Co-Surfactants in Hand Dishwashing Liquids
  7. Evaluation of the Bactericidal Activity of Didecyl Dimethyl Ammonium Chloride in 2-Propanol against Pseudomonas aeruginosa Strains with Adaptive Resistance to this Active Substance According to European Standards
  8. Environmental Chemistry
  9. Production of Bioemulsifier by Yeast from the Meyerozyma guilliermondii Complex Isolated from Soil Contaminated with Diesel Oil
  10. Physical Chemistry
  11. Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide
  12. Wettability of Phosphonium Benzene Sulfonate on Parafilm
  13. Study of Zinc-glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique
  14. Study on a Class of Cationic Gemini Surfactants
  15. Application
  16. The Performance Comparison Of Branched Methyl Stearate Ethoxylate and Linear Methyl Stearate Ethoxylate
  17. Study of the Rheological Behavior of a Spent Solution of Viscoelastic Surfactant in the Presence of Iron Ions
  18. Micellar Catalysis
  19. Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media
  20. Novel Surfactant
  21. Synthesis and Properties of Amphoteric Amide Surfactants with Reactive Group
Downloaded on 19.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/113.110633/html
Scroll to top button