Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media
-
Sangita Mandal
Abstract
Advances in science and technology are promoting eco-friendly synthesis routes, green chemicals, and non-hazardous solvents. A suitable method for the synthesis of 2-(prop-2-ynyloxy) benzaldehyde was developed using three different aqueous micellar media. The targeted product ether is completely immiscible in water, but in combination with interface active surfactants it has been possible to produce the hydrophobic organic compound in water. Micelles function as a pseudocellular organic environment to isolate species from the main solvent and favor compartmentalization of reagents. There is an increase in the local concentration and consequently the reactivity increases. The use of such unique chemo-, regio-, and stereoselectivity renders this reaction new. Organic species added to a micellar media are distributed between water and micelles depending on polarity, charge, and size. In the experiments it was observed that salicylaldehyde and propargyl bromide interacted best in CTAB media and the yield of the formed product was 96 %.
Kurzfassung
Fortschritte in Wissenschaft und Technologie fördern umweltfreundliche Synthesewege, grüne Chemikalien und nicht gefährliche Lösungsmittel. Ein geeignetes Verfahren zur Synthese von 2-(Prop-2-inyloxy)benzaldehyd wurde unter Verwendung von drei verschiedenen wässrigen mizellaren Medien entwickelt. Das angestrebte Ether-Produkt ist mit Wasser nicht mischbar, aber in Verbindung mit den grenzflächenaktiven Tensiden wurde die Herstellung der hydrophoben organischen Verbindung in Wasser ermöglicht. Mizellen fungieren als pseudozellige organische Umgebung, um Spezies aus dem Hauptlösungsmittel zu isolieren und die Kompartimentierung von Reagenzien zu begünstigen. Es kommt zu einer Erhöhung der lokalen Konzentration und folglich steigt die Reaktivität. Die Verwendung einer solchen einzigartigen Chemo-, Regio- und Stereoselektivität ist neu für diesen Reaktionstyp. Organische Spezies, die zu mizellaren Medien hinzugefügt werden, werden je nach Polarität, Ladung und Größe zwischen Wasser und Mizellen verteilt. Bei den Experimenten wurde beobachtet, dass Salicylaldehyd und Propargylbromid in CTAB-Medien am besten zusammenwirkten und das Produkt mit einer Ausbeute von 96 % gebildet wurde.
References
1. Mondal, M. H., Malik, S., De, S., Bhattacharyya, S. S. and Saha, B.: Employment and resurrection of surfactants in bipyridine promoted oxidation of butanal using bivalent copper at NTP; Res. Chem. Intermed.43(3) 1651–1670. 10.1007/s11164-016-2721-6Search in Google Scholar
2. Malik, S., Mondal, M. H., Ghosh, A., De, S., Mahali, K., Bhattacharyya, S. S. and Saha, B.: Combination of Sodium Dodecylsulfate and 2, 2′-Bipyridine for Hundred Fold Rate Enhancement of Chromium (VI) Oxidation of Malonic Acid at Room Temperature: A Greener Approach; J. Solut.Chem.45 (7), 1043–1060. 10.1007/s10953-016-0494-6Search in Google Scholar
3. Mondal, M. H., Malik, S. and Saha, B.: Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl; Tenside Surf. Det.54 (5), 378–384. 10.3139/113.110519Search in Google Scholar
4. MandalS., Mandal, S., Ghosh, S. K., Sar, P., Ghosh, A., Saha, R. and Saha, B.: A review on the advancement of ether synthesis from organic solvent to water; RSC Advances;6 (2016) 69605–69614. 10.1039/c6ra12914eSearch in Google Scholar
5. Enthaler, S. and Company, A.: Palladium-catalysed hydroxylation and alkoxylation; Chem. Soc. Rev,40 (2011) 4912–4924. PMid:21643619; 10.1039/C1CS15085ESearch in Google Scholar
6. Ma, D., and Cai, Q.: N,N-Dimethyl Glycine-Promoted Ullmann Coupling Reaction of Phenols and Aryl Halides; Org. Lett., 5 (21) (2003) 3799–3802. PMid:14535713; 10.1021/ol0350947Search in Google Scholar
7. Agan, J., Hauptman, P., Shapiro, E., Casalnuovo, R. A.: Using Intelligent/Random Library Screening To Design Focused Libraries for the Optimization of Homogeneous Catalysts:Ullmann Ether Formation; J. Am. Chem. Soc.122 (2000) 5043–5051. 10.1021/ja000094cSearch in Google Scholar
8. Zhu, J., Price, A. B., Zhao, X. S. and Skonezny, M. P.: Copper(I)-catalyzed intramolecular cyclization reaction of 2-(2′-chlorophenyl)ethanol to give 2,3-dihydrobenzofuran; Tetrahedron Lett.41 (2000) 4011–4014. 10.1016/S0040-4039(00)00548-7Search in Google Scholar
9. Shen, B., Liu, W. and Nonaka, K.: Enediyne Natural Products: Biosynthesis and Prospect Towards Engineering Novel Antitumor Agents;Curr.Med.Chem,10 (2003) 2317–2325. PMid:14529344; 10.2174/0929867033456701Search in Google Scholar PubMed
10. Nicolaou, C. K., Smith, L. A., and les infos Or et azacycles: vers la synthèse totale de molécules naturelles Acc.Chem. Res, 25 (1992) 497.Search in Google Scholar
11. Suzuki, I., Shigenaga, A., Nemoto, H. and Shibuya, M.: Synthesis and DNA damaging ability of enediyne–polyamine conjugates;Tetrahedron. Lett, 45 (2004) 1955–1959, doi.org/10.1016/j.tetlet.2003.12.139. 10.1016/j.tetlet.2003.12.139Search in Google Scholar
12. Dai. W, M.: Natural Product Inspired Design of Enediyne Prodrugs via Rearrangement of an Allylic Double Bond; Curr.Med.Chem, 10 (2003) 2265–2283. PMid:14529342; 10.2174/0929867033456756Search in Google Scholar PubMed
13. Wang, Z, He, Q., Liang, Y., Wang, D., Li, Y. Yi. and LiD.: Histone Acetyltransferase 1 Promotes Homologous Recombination in DNA Repair by Facilitating Histone Turnover;Biochem. Pharm,65 (2003) 18271–18282. PMid:23653357; 10.1074/jbc.M113.473199Search in Google Scholar PubMed PubMed Central
14. Lin, F. C, Lo, H. Y., Hsieh, C. M., Chen, H. Y., Wanga, J. J. and Wua, J. M.: Cytotoxicities, cell cycle and caspase evaluations of 1,6-diaryl-3(Z)-hexen-1,5-diynes, 2-(6-aryl-3(Z)-hexen-1,5-diynyl)anilines and their derivatives;Bioorg.Med.Chem.,13 (2005) 3565–3575. PMid:15848769; 10.1016/j.bmc.2005.02.062Search in Google Scholar PubMed
15. Fouad, F. S., Wright, J. M., Plourde, IIG., Purohit, A. D., Wyatt, J. K., El-Shafey, A., Hynd, G., Crasto, C. F., Lin, Y. and Jones, G. B.: Synthesis and Protein Degradation Capacity of Photoactivated Enediynes; J. Org. Chem.70 (2005) 9789–9797. PMid:16292807; 10.1021/jo051403qSearch in Google Scholar PubMed
16. Basu, A., Ghosh, S. K., Saha, R., Ghosh, A., Ghosh, T., Mukherjee, K., Bhattacharyya, S. S. and Saha, B.: Kinetic studies of glutamic acid oxidation by hexavalent chromium in presence of surfactants. Tenside Surf. Det.49 (2012)481. 10.3139/113.110220Search in Google Scholar
17. Nicolaou, C. K. and Dia, M. W.: Chemistry and Biology of the Enediyne Anticancer Antibiotics; Angew.Chem.Int.Ed, 30 (1991)1387–1416. 10.1002/anie.199113873Search in Google Scholar
18. Coates, J.: Interpretation of Infrared Spectra, A Practical Approach; Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd.1–23.Search in Google Scholar
19. Solhy, A., Elmakssoudi, A., Tahir, R., Karkouri, M., Larzek, M., Bousmina, M., and Zahouily, M.: Clean chemical synthesis of 2-amino-chromenes in water catalyzed by nanostructured diphosphate Na2CaP2O7;Green Chem, 12 (2010) 2261–2267. 10.1039/C0GC00387ESearch in Google Scholar
20. Mondal, M. H., Sarkar, A., Maiti, T. K. and Saha, B.: Microbial assisted (pseudomonas sp.) production of novel bio-surfactant rhamnolipids and its characterisation by different spectral studies, J. Mol. Liq.242 (2017) 873–78. 10.1016/j.molliq.2017.07.089Search in Google Scholar
21. Kumar, D., Seth, K., Kommi, D. N., Bhagat, S. and Chakraborti, A. K.: Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis; RSC Adv.3 (2013) 15157–15168. 10.1039/C3RA41038BSearch in Google Scholar
22. Ghosh, A., Saha, R., and Saha, B.: Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on propanol to propionaldehyde conversion in aqueous mediaJ. Ind. Eng. Chem.20 (2014) 345–355. 10.1016/j.jiec.2013.03.028Search in Google Scholar
23. Das, A. K., Roy, A. and Saha, B.: Kinetics and mechanism of the picolinic acid catalysed chromium (VI) oxidation of ethane-1,2-diol in the presence and absence of surfactants TransitionMet. Chem.26 (2001) 630–637. 10.1515/irm-1999-0210Search in Google Scholar
24. Ghosh, A., Saha, R., Mukhejee, K., Ghosh, S. K., Bhattacharyya, S. S., Laskar, S. and Saha, B.: Selection of Suitable Combination of Nonfunctional Micellar Catalyst and Heteroaromatic Nitrogen Base as Promoter for Chromic Acid Oxidation of Ethanol to Acetaldehyde in Aqueous Medium at Room TemperatureInt. J. Chem. Kinet.45 (2013) 175–186. 10.1002/kin.20754Search in Google Scholar
25. Ghosh, S. K., Basu, A., Saha, R., Ghosh, A., Mukherjee, K. and Saha, B.: Micellar catalysis on picolinic acid promoted hexavalent chromium oxidation of glycerol; J. Coord. Chem.65 (2012) 1158–1177. 10.1080/00958972.2012.669035Search in Google Scholar
26. Malik, S., Saha, D., Mondal, M. H., Sar, P., Ghosh, A., Mahali, K., and Saha, B.: Micellar effect on hetero-aromatic nitrogen base promoted chromic acid oxidation of 1.3-propanediol in aqueous media at room temperature, J. Mol. Liq.225(2017) 207–216. 10.1016/j.molliq.2016.11.033Search in Google Scholar
27. Ghosh, A., Sar, P., Malik, S. and Saha; Role of surfactants on metal mediated cerium(IV) oxidation of valeraldehyde at room temperature and pressure;B. J. Mol. Liq.211 (2015) 48–62. 10.1016/j.molliq.2015.06.056Search in Google Scholar
28. JainR., Sharma, K. and Kumar, D.: Ionic liquid mediated synthesis, reactions, and insecticidal activity of 1-[(1H-benzoimidazol-2-yl)amino]spiro[azetidine-4,4-[4 H]chroman]-2-ones; Tetrahedron Lett.53 (2012) 239–251. 10.3906/kim-1206-47Search in Google Scholar
29. Mandal, S., Mandal, S., Biswas, S., Banerjee, S. and Saha, B.: Synthesis of 2-(ethynyloxy)naphthaene-1-carbaldehyde using 2-hydroxy benzyl alcohol and propargyl bromide in aqueous micellar mediaRes. Chem. Intermed.44 (2018) 2169–2177. 10.1007/s11164-017-3221-zSearch in Google Scholar
30. Naskar, S., Roy, S. and Sarkar, S.: Novel Route for the Synthesis of 3-(Pyrrol-1-yl)-indolin-2-ones in Aqueous Micellar Medium; Synth. Commun; 441629–1634 (2014). 10.1080/00397911.2013.867506Search in Google Scholar
31. Mandal, S., Mandal, S., Biswas, S. and SahaB.: Synthesis of 4-Hydroxy-4-(4-nitrophenyl)butan-2-one using p-nitro Benzaldehyde and Acetone in Aqueous Micellar media using L-proline; Tenside Surf.Det.55(4) (2018) 325–330. 10.3139/113.110566Search in Google Scholar
32. Mondal, M. H., Malik, S., Garain, A., Mandal, S. and Saha, B.: Extraction of Natural Surfactant Saponin from Soapnut (Sapindus mukorossi) and its Utilization in the Remediation of Hexavalent Chromium from Contaminated Water, Tenside. Surf. Det.54 (2017) 519–29. 10.3139/113.110523Search in Google Scholar
33. Mondal, M. H., Roy, A., Malik, S., Ghosh, A. and Saha, B.: Review on chemically bonded geminis with cationic heads: second-generation interfactants, Res. Chem. Intermed.42 (2015) 1913–28. 10.1007/s11164-015-2125-zSearch in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- Review on Silicone Surfactants: Silicone-based Gemini Surfactants, Physicochemical Properties and Applications
- Cleaning Agents
- Evaluation of Ethoxylated Rapeseed Oil Fatty Acids Methyl Esters as Nonionic Co-Surfactants in Hand Dishwashing Liquids
- Evaluation of the Bactericidal Activity of Didecyl Dimethyl Ammonium Chloride in 2-Propanol against Pseudomonas aeruginosa Strains with Adaptive Resistance to this Active Substance According to European Standards
- Environmental Chemistry
- Production of Bioemulsifier by Yeast from the Meyerozyma guilliermondii Complex Isolated from Soil Contaminated with Diesel Oil
- Physical Chemistry
- Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide
- Wettability of Phosphonium Benzene Sulfonate on Parafilm
- Study of Zinc-glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique
- Study on a Class of Cationic Gemini Surfactants
- Application
- The Performance Comparison Of Branched Methyl Stearate Ethoxylate and Linear Methyl Stearate Ethoxylate
- Study of the Rheological Behavior of a Spent Solution of Viscoelastic Surfactant in the Presence of Iron Ions
- Micellar Catalysis
- Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media
- Novel Surfactant
- Synthesis and Properties of Amphoteric Amide Surfactants with Reactive Group
Articles in the same Issue
- Contents/Inhalt
- Contents
- Review Article
- Review on Silicone Surfactants: Silicone-based Gemini Surfactants, Physicochemical Properties and Applications
- Cleaning Agents
- Evaluation of Ethoxylated Rapeseed Oil Fatty Acids Methyl Esters as Nonionic Co-Surfactants in Hand Dishwashing Liquids
- Evaluation of the Bactericidal Activity of Didecyl Dimethyl Ammonium Chloride in 2-Propanol against Pseudomonas aeruginosa Strains with Adaptive Resistance to this Active Substance According to European Standards
- Environmental Chemistry
- Production of Bioemulsifier by Yeast from the Meyerozyma guilliermondii Complex Isolated from Soil Contaminated with Diesel Oil
- Physical Chemistry
- Fluorescence Study of Aggregation Behaviour of Cationic Surfactant Carbethopendecinium Bromide and its Comparison with Cetyltrimethylammonium Bromide
- Wettability of Phosphonium Benzene Sulfonate on Parafilm
- Study of Zinc-glycylglycine Complex with Ninhydrin in Aqueous and Cationic Micellar Media: A Spectrophotometric Technique
- Study on a Class of Cationic Gemini Surfactants
- Application
- The Performance Comparison Of Branched Methyl Stearate Ethoxylate and Linear Methyl Stearate Ethoxylate
- Study of the Rheological Behavior of a Spent Solution of Viscoelastic Surfactant in the Presence of Iron Ions
- Micellar Catalysis
- Synthesis of 2-(Prop-2-ynyloxy) Benzaldehyde using Salicyl Aldehyde and Propargyl Bromide in Aqueous Micellar Media
- Novel Surfactant
- Synthesis and Properties of Amphoteric Amide Surfactants with Reactive Group