Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
-
S. Habbal
Abstract
This study aimed to investigate the simultaneous removal of methylparaben (MePB) and propylparaben (PrPB) from effluents (each one at 16 mg/L) using a nonionic micellar system containing Triton X-114. Response surface methodology (RSM) has been carried out. Extraction results using nonionic surfactant two-phase system were considered as a function of surfactant concentration and temperature variation. Four responses were investigated: MePB and PrPB extraction yield (E), solute (Xs,w) and surfactant (Xsf,w) concentrations in the aqueous phase and the volume fraction of micellar phase (ϕC) at equilibrium. Very high extraction efficiencies (99 % for PrPB and 84 % for MePB) were achieved at optimal conditions. Thereby, the amounts of PrPB and MePB were reduced 80 and 5 times, respectively. The extraction improvement using sodium sulfate was also shown. Finally, the solute stripping from micellar phase by pH change was proved.
Kurzfassung
Ziel dieser Untersuchung war, Methylparaben (MePB) und Propylparaben (PrPB) aus Abwässern (jeweils mit 16 mg/l) unter Verwendung eines nichtionischen Mizellensystems (Triton X-114) simultan zu entfernen. Die Response-Surface-Methode (RSM) wurde durchgeführt. Die Extraktionsergebnisse unter Verwendung eines nichtionischen Tensid-Zweiphasensystems wurden als Funktion der Tensidkonzentration und der Temperaturänderung betrachtet. Es wurden vier Antworten untersucht: MePB- und PrPB-Extraktionsausbeute (E), Konzentrationen von gelöstem Stoff (Xs,w) und Tensid (Xsf,w) in der wässrigen Phase und der Volumenanteil der mizellaren Phase (ϕC) im Gleichgewicht. Unter optimalen Bedingungen wurde eine sehr hohe Extraktionswirkung (99 % für PrPB und 84 % für MePB) erreicht. Dadurch wurden die Mengen an PrPB und MePB um das 80- bzw. 5-fache reduziert. Die Extraktionsverbesserung unter Verwendung von Natriumsulfat wurde ebenfalls gezeigt. Schließlich wurde das Ablösen der gelösten Substanz aus der mizellaren Phase durch pH-Wert-Änderung nachgewiesen.
References
1. Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C. M., Kohler, H-P. E. and Giger, W.: Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ. Sci. Pollut. Res. Int.17 (2010) 834–43. PMid:20017000; 10.1007/s11356-009-0275-5Suche in Google Scholar PubMed PubMed Central
2. Núñez, L., Tadeo, J. L., García-Valcárcel, A. I. and Turiel, E.: Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. J. Chromatogr.1214 (2008) 178–82. PMid:19010476; 10.1016/j.chroma.2008.10.105Suche in Google Scholar PubMed
3. Andersen, F. A.: Final amended report on the safety assessment of methylparaben, ethylparaben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, and benzylparaben as used in cosmetic products. Int. J. Toxicol.27 (4) (2008) 1–82. 10.1080/10915810802548359Suche in Google Scholar PubMed
4. Harvey, P. W. and EverettD. J.: Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours. J. Appl. Toxicol.24 (1) (2004) 1–4. 10.1002/jat.957Suche in Google Scholar PubMed
5. Arditti, R.: Cosmetics, parabens, and breast cancer. Organic Consumers Association. (2004).Suche in Google Scholar
6. Darbre, P. D. and Harvey, P. W.: Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol.28(5) (2008) 561–78. PMid:18484575; 10.1002/jat.1358Suche in Google Scholar PubMed
7. Darbre, P. D., Aljarrah, A., Miller, W. R., Coldham, N. G., Sauer, M. J. and Pope, G. S.: Concentrations of Parabens in human breast tumours. J. Appl. Toxicol.24(1) (2004) 5–13. PMid:14745841; 10.1002/jat.958Suche in Google Scholar PubMed
8. Tran, T. M., Minh, T. B., Kumosani, T. A. and Kannan, K.: Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: implications for exposure. Chemosphere. 144 (2016) 1553–1559. PMid:26498104; 10.1016/j.chemosphere.2015.10.028Suche in Google Scholar PubMed
9. Li, W., Shi, Y., Gao, L., Liu, J. and CaiY.: Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. J. Hazard. Mater.300 (2015) 29–38. PMid:26151382; 10.1016/j.jhazmat.2015.06.060Suche in Google Scholar PubMed
10. Fan, C. and Wang, S. C.Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products, Chemosphere. 179 (2017) 306–315. PMid:28376394; 10.1016/j.chemosphere.2017.03.120Suche in Google Scholar PubMed
11. Fan, C. and Wang, H. C.: Degradation of Methyl Paraben by the Aerated Pebble-bed Biofilm System, APCBEE Procedia.1 (2012) 299–303. 10.1016/j.apcbee.2012.03.049Suche in Google Scholar
12. Lu, J., Li, H., Tu, Y. and Yang, Z.: Biodegradation of four selected parabens with aerobic activated sludge and their transesterification product, Ecotoxicol. Environ. Saf., 156 (2018) 48–55. 10.1016/j.ecoenv.2018.02.078Suche in Google Scholar
13. Kheng, T. S.: Noorsaadah, A.Rahman, M. and Radzi, A.B.Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation, Chemosphere, 81 (2010) 1446–1453. PMid:20875662; 10.1016/j.chemosphere.2010.09.004Suche in Google Scholar
14. Gomes, F. E. R., de Souza, N. E., Galinaro, C. A., Arriveti, L. O. R., de Assis, J. B. and Tremiliosi-Filho, G.: Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes, J. Electroanal. Chem.769 (2016)124–130; DOI.org/10.1016/j.jelechem.2016.03.016. 10.1016/j.jelechem.2016.03.016Suche in Google Scholar
15. Dionisio, D., Motheo, A. J., Sáez, C. and RodrigoM. A.: Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater, Sep. Purif. Technol.208 (2019) 201–207. 10.1016/j.seppur.2018.03.009Suche in Google Scholar
16. Papadopoulos, C., Frontistis, Z., Antonopoulou, M., Venieri, D., Konstantinou, I. and Mantzavinos, D.: Sonochemical degradation of ethyl paraben in environmental samples: statistically important parameters determining kinetics, by-products and pathways, Ultrasonics Sonochem.31 (2016) 62–70. PMid:26964924; 10.1016/j.ultsonch.2015.12.002Suche in Google Scholar
17. Gomes, J. F., Leal, I., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Zaleska-Medynska, A., Quinta-Ferreira, M., Costa, R., Quinta-Ferreira, R. M., and Martins, R. C.: Detoxification of Parabens Using UV-A enhanced by Noble Metals–TiO2 Supported Catalysts, J. Environ. Chem. Eng.5(4) (2017) 3065–3074. 10.1016/j.jece.2017.06.010Suche in Google Scholar
18. Velegraki, T., Hapeshi, E., Fatta-Kassinos, D. and Poulios, I.: Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Applied Catalysis B: Environmental.178 (2015) 2–11. 10.1016/j.apcatb.2014.11.022Suche in Google Scholar
19. Gmurek, M. and Miller, J.: Photosensitized oxidation of a water pollutant using sulphonated porphyrin, Chem. Pap.66 (2012) 120–128. 10.2478/s11696-011-0103-5Suche in Google Scholar
20. Watanabe, H. and Tanaka, H.: a non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta, 25 (1978) 585–589. 10.1016/0039-9140(78)80151-9Suche in Google Scholar
21. Scamehorn, J. F. and Harwell, J. H.: Surfactant-Based Treatment of Aqueous Process Stream, in: Surfactant in Chemical/Process Engineering, Wasan, D.T., Ginn, M.E.; Shah D.O., Eds., Surfactant Science Series, Marcel Dekker, New York.28 (1988) 77–125.Suche in Google Scholar
22. Gullickson, N. D., Scamehorn, J. F. and Harwell, J. H.: Liquid-coacervate extraction, in: Surfactant-based Separation Processes. Surfactant Science Series, Marcel Dekker, New York33 (1989) 141–152.Suche in Google Scholar
23. Akita, S. and Takeuchi, H.: Cloud Point extraction of organic compounds from aqueous solution with non-ionic surfactant. Sep. Sci. Technol.30 (1995) 833–835. 10.1080/01496399508013895Suche in Google Scholar
24. Hinze, W. L. and Pramauro, E.: A critical review of surfactant-mediated phase separation (Cloud Point Extraction): theory and application, Crit. Rev. Anal. Chem., 24(2) (1993) 133–177. 10.1080/10408349308048821Suche in Google Scholar
25. Quina, F. H. and Hinze, W. L.: Surfactant-mediated cloud point extraction: an environmentally benign alternative separation approach, Ind. Eng. Chem. Res., 38 (1999) 150–168. 10.1021/ie980389nSuche in Google Scholar
26. De Barros Neto, E. L., Canselier, J. P. and Gourdon, C.: Organic solvent-free extraction of phenol through liquid-coacervate systems, Solvent Extraction for the 21st Century, Proceedings of the International Solvent Extraction Conference, Barcelone (ISEC’99), July 1999, Cox, M.; Hidalgo M.; Valiente M. Eds., 1 (2001) 171–176, Society of Chemical Industry, London.Suche in Google Scholar
27. Sakulwongyai, S., Trakultamupatam, P., Scamehorn, J. F., Osuwan, S. and Christian, S. D.: Use of surfactant coacervate phase to extract chlorinated aliphatic compounds from water: extraction of chlorinated ethanes and quantitative comparison to solubilization in micelles. Langmuir, 16 (2000) 8226–8230. 10.1021/la9817821Suche in Google Scholar
28. Kimchuwanit, W., Osuwan, S., Scamehorn, J. F., Harwell, J. H. and Haller, K. J.: Use of a micellar-rich coacervate to extract trichlorethylene from water. Sep. Sci. Technol.35 (13) (2000) 1991–2002. 10.1081/SS-100102085Suche in Google Scholar
29. Materna, K., Milosz, I., Miesiac, I.Cote, G. and Szymanowski, J.: Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants. Environ. Sci. Technol., 35 (2001) 2341–2346. PMid:11414042; 10.1021/es000025ySuche in Google Scholar
30. Materna, K. and Szymanowski, J.: Separation of phenols from aqueous micellar solutions by cloud point extraction. J. Colloid Interface Sci.255 (2002) 195–201. 10.1006/jcis.2002.8613Suche in Google Scholar
31. Li, J. and Chen, B.: Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process, Journal of Colloid and Interface Science, 2003, 263(2): 625–632. 10.1016/S0021-9797(03)00403-XSuche in Google Scholar
32. Purkait, M. K., Dasgupta, S. and De, S.: Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J. Hazard. Mater, 137 (2006) 827–835. PMid:16600488; 10.1016/j.jhazmat.2006.03.003Suche in Google Scholar PubMed
33. Ameur, S., Haddou, B., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point extraction of ‡9-tetrahydrocannabinol from cannabis resin. Anal. Bioanal. Chem., 405 (2013) 3117–3123. PMid:23354583; 10.1007/s0021-013-6743-2Suche in Google Scholar
34. Haddou, B.Canselier, J. P. and Gourdon, C.: Use of Cloud Point Extraction with Ethoxylated Surfactants for Organic Pollution Removal, in: The Role of Colloidal Systems in Environmental Protection, M.Fanun, Ed., Elsevier, 5 (2014) 97–142. 10.1016/B978-0-444-63283-8.00005-3Suche in Google Scholar
35. Talbi, Z., Haddou, B., Ghouas, H., Kameche, M., Derriche, Z and Gourdon, C.: Cationic Dye Removal from Aqueous Solutions Using Ionic Liquid and Nonionic Surfactant-Ionic Liquid Systems: A Comparative Study Based upon Experimental Design. Chem. Eng. Comm.201(1) (2014) 41–52. 10.1080/00986445.2012.759563Suche in Google Scholar
36. Ghouas, H., Haddou, B., Kameche, M., Louhibi, L., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point extraction of α-amino acids, Sep. Sci. Technol., 49(14) (2014) 2142–2150. 10.1080/01496395.2014.919322Suche in Google Scholar
37. Ghouas, H., Haddou, B., Kameche, M., Canselier, J. P. and Gourdon, C.: Removal of Tannic Acid from Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction, J. Surf. Deterg., 19(1) (2016) 57–66. 10.1007/s11743-015-1764-9Suche in Google Scholar
38. Habbal, S., Haddou, B., Kameche, M., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point or ionic liquid extraction of furfural from aqueous solution: a comparative study based upon experimental design. Desalination Water Treat.57(50) (2016) 23770–23778. 10.1080/19443994.2015.1133322Suche in Google Scholar
39. Favre-Réguillon, A., Draye, M., Lebuzit, G., Thomas, S., Foos, J.Cote, G. and Guy, A.: Cloud point extraction: an alternative to traditional liquid–liquid extraction for lanthanides (III) separation. Talanta63 (2004) 803–806. PMid:18969503; 10.1016/j.talanta.2003.12.033Suche in Google Scholar PubMed
40. Canselier, J. P., Gourdon, C., Duarte, L. J. N., De Barros Neto, E. L., Haddou, B. and Gumila: Procédé d'extraction sans solvant des polluants organiques et métalliques. French Patent FR2900145 (A1); WO-2007-122158 (PCT/EP2007/053777), April 18, 2007.Suche in Google Scholar
41. Duarte, L. J. N. and Canselier, J. P.: Two-aqueous phase extraction for the removal of organic pollutants ant metalions. CHEMPOR 2008 – 10th International Chemical and Biological Engineering Conference. Braga (Portugal), 4–8 September. Proceedings on disk.Suche in Google Scholar
42. Trakultamupatam, P., Scamehorn, J. F. and Osuwan, S.: Scaling up cloud point extraction of aromatique contaminants from wastewater in a continuous rotating disk contactor. II. Effect of operating temperature and added electrolyte. Sep. Sci. Technol., 39 (3) (2005) 501–516. 10.1081/SS-120027992Suche in Google Scholar
43. Taechangam, P., Scamehorn, J. F., Osuwan, S. and Rirksomboon, T.: Continuous cloud point extraction of volatile organic contaminants from wastewater in a multi-stage rotating disc contactor: effect of structure and concentration of solutes. Sep. Sci. Technol., 43(14) (2008) 3601. 10.1080/01496390802282339Suche in Google Scholar
44. Yao, B. and Yang, L.: Pilot-scale ultrasonic assisted cloud point extraction of polycyclic aromatic hydrocarbons from polluted water. Sep. Sci. Technol., 43(6) (2008) 1564–1580. 10.1080/01496390801955588Suche in Google Scholar
45. Ingram, T., Storm, S.Glembin, P., Bendt, S., Huber, D., Mehling, T and Smirnova, I.: Aqueous surfactant two-phase systems for the continuous countercurrent cloud point extraction. Chem. Ing. Techn.84(6) (2012) 840–848. 10.1002/cite.201100256Suche in Google Scholar
46. Benkhedja, H., Canselier, J. P., Gourdon, C and Haddou, B.: Phenol and benzenoid alcohols separation from aqueous stream using cloud point extraction: Scaling-up of the process in a mixer-settler, J. Water Proc. Eng.18 (2017) 202–212. 10.1016/j.jwpe.2017.06.016Suche in Google Scholar
47. RitterE. and SmirnovaI.: continuous countercurrent extractive biocatalysis in aqueous surfactant tow-phase systems, Chem. Ing. Tech.90(3) (2018) 1–11. 10.1002/cite.201700054Suche in Google Scholar
48. Schott, H., Royce, A. E. and Han, S. K.: Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions. J Colloid Interface Sci.98 (1984) 196. 10.1016/S0927-7757(01)00491-5Suche in Google Scholar
49. Sharma, K. S., Patil, S. R. and Rakshit, A. K.: Study of the cloud point of C12En nonionic surfactants: effect of additives, Colloids and Surfaces A: Physicochem. Eng Aspects., 219 (2003) 67. 10.1016/S0927-7757(03)00012-8Suche in Google Scholar
50. Box, G. E. P. and Draper, N.: Empirical Model Building and Response Surfaces; John Wiley & Sons, New York. 1987. 10.1137/1031022Suche in Google Scholar
51. Thiele, B., Günther, K. and Schwuger, M. J.: Alkylphenol ethoxylates: trace analysis and environmental behavior. Chem. Rev.97 (1997) 3247–3272. PMid:11851490; 10.1021/cr970323mSuche in Google Scholar
52. Jonkers, N., Laane, R. W. P. M. and De Voogt, P.: Sources and fate of nonylphenol ethoxylates and their metabolites in the Dutch coastal zone of the North Sea. Mar. Chem.96 (2005) 115–135. 10.1016/j.marchem.2004.12.004Suche in Google Scholar
53. Cheng, X. Q., Zhang, C., Wang, Z. X and Shao, L.: Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification, J. Membrane Sci.499 (2016)326–334. 10.1016/j.memsci.2015.10.060Suche in Google Scholar
54. Saito, H. and Shinoda, K.: The solubilization of hydrocarbons in aqueous solution of nonionic surfactants. J Colloid Interface Sci.24 (1967) 10–15. 10.1016/0021-9797(67)90271-8Suche in Google Scholar
© 2019, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Review Article
- Novel Methods for Efficacy Testing of Disinfectants – Part II
- Washing Machines/Detergents
- A Comprehensive Literature Study on Microfibres from Washing Machines
- Evaluation of Fabric Softener Formulations with High Concentrations of Cationic Surfactant
- Environmental Chemistry
- Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
- Mathematical Modeling of Destabilizing Gas Condensate Droplets in Water Emulsions Using the Population Balance Method
- Application
- Sodium Lauryl Sulfate vs. Sodium Coco Sulfate. Study of the Safety of Use Anionic Surfactants with Respect to Their Interaction with the Skin
- Esterification of Oleic Acid with n-Octanol in Three-Phase Microemulsions
- Evaluation of Interfacial Properties of Aqueous Solutions of Anionic, Cationic and Non-ionic Surfactants for Application in Enhanced Oil Recovery
- Physical Chemistry
- Adsorption of Single and Mixed Surfactants onto Jordanian Natural Clay
- Viscometric Studies of Cu(II) Surfactants Derived from Mustard Oil in Benzene at 303.15 K