Home Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System
Article
Licensed
Unlicensed Requires Authentication

Easy Removal of Methylparaben and Propylparaben from Aqueous Solution Using Nonionic Micellar System

  • S. Habbal , B. Haddou , J. P. Canselier and C. Gourdon
Published/Copyright: March 7, 2019
Become an author with De Gruyter Brill

Abstract

This study aimed to investigate the simultaneous removal of methylparaben (MePB) and propylparaben (PrPB) from effluents (each one at 16 mg/L) using a nonionic micellar system containing Triton X-114. Response surface methodology (RSM) has been carried out. Extraction results using nonionic surfactant two-phase system were considered as a function of surfactant concentration and temperature variation. Four responses were investigated: MePB and PrPB extraction yield (E), solute (Xs,w) and surfactant (Xsf,w) concentrations in the aqueous phase and the volume fraction of micellar phase (ϕC) at equilibrium. Very high extraction efficiencies (99 % for PrPB and 84 % for MePB) were achieved at optimal conditions. Thereby, the amounts of PrPB and MePB were reduced 80 and 5 times, respectively. The extraction improvement using sodium sulfate was also shown. Finally, the solute stripping from micellar phase by pH change was proved.

Kurzfassung

Ziel dieser Untersuchung war, Methylparaben (MePB) und Propylparaben (PrPB) aus Abwässern (jeweils mit 16 mg/l) unter Verwendung eines nichtionischen Mizellensystems (Triton X-114) simultan zu entfernen. Die Response-Surface-Methode (RSM) wurde durchgeführt. Die Extraktionsergebnisse unter Verwendung eines nichtionischen Tensid-Zweiphasensystems wurden als Funktion der Tensidkonzentration und der Temperaturänderung betrachtet. Es wurden vier Antworten untersucht: MePB- und PrPB-Extraktionsausbeute (E), Konzentrationen von gelöstem Stoff (Xs,w) und Tensid (Xsf,w) in der wässrigen Phase und der Volumenanteil der mizellaren Phase (ϕC) im Gleichgewicht. Unter optimalen Bedingungen wurde eine sehr hohe Extraktionswirkung (99 % für PrPB und 84 % für MePB) erreicht. Dadurch wurden die Mengen an PrPB und MePB um das 80- bzw. 5-fache reduziert. Die Extraktionsverbesserung unter Verwendung von Natriumsulfat wurde ebenfalls gezeigt. Schließlich wurde das Ablösen der gelösten Substanz aus der mizellaren Phase durch pH-Wert-Änderung nachgewiesen.


Correspondence address, Prof. Dr. Haddou Boumediene, Laboratory of Physical Chemistry of Materials: Catalysis and Environment, University of Science and Technology of Oran, BP 1505, M'Nouar, Oran, Algeria, E-Mail:

Ms. Habbal, Safia is a Ph. D. student in the University of the Sciences and Technology of Oran. His research interest is in separation science using cloud point extraction of organic and metallic species from effluent.

Prof. Boumediene Haddou received his Ph. D. in chemical engineering and environment in 2003 from INP-Toulouse, France, He has guided more than 10 M. Sc. and Ph. D. students and published more than 20 articles. At present, he is a professor at the Faculty of Chemistry, University of the Sciences and Technology of Oran, Algeria. He is also the director of the research group in Laboratory of Physical Chemistry of Materials: Catalysis and Environment (LPCM-EC).

Dr. Canselier, Jean Paul (actually retired) was a University Teacher at the National Polytechnic Institute of Toulouse (National School of Arts in Chemical Engineering and Technology) and researcher at the Laboratory of Chemical Engineering. His teaching and research mainly concern physical chemistry (including interfacial phenomena), and industrial chemistry. He was in charge of the publications of the Formulation Group of the French Chemical Society.

Professor Gourdon, Christophe is a University Teacher at the National Polytechnic Institute of Toulouse (National School of Arts in Chemical Engineering and Technology). As a CNRS researcher for 10 years at Chemical Engineering Laboratory of Toulouse, its work has focused on solvent extraction and related technology, and more generally on the study of liquid-liquid dispersed flows. Professor since 1992, he developed a scientific strategy based on promoting continuous processes intensified. He leads a team whose themes are: microreactors and microthermal, reactors and microstructured milli-exchangers. Involved in the promotion of research the has been a consultant to various companies (Total, Arkema, Rhodia, …), director of CRITT Process Engineering, and recently he helped the MEPI (Process Intensification industrial demonstration platform create to in Toulouse. He was expert at the MSTP (1994–1997), Vice-President and Chairman of the 62th CNU section (Energy and Process Engineering) since 2003.


References

1. Jonkers, N., Sousa, A., Galante-Oliveira, S., Barroso, C. M., Kohler, H-P. E. and Giger, W.: Occurrence and sources of selected phenolic endocrine disruptors in Ria de Aveiro, Portugal. Environ. Sci. Pollut. Res. Int.17 (2010) 83443. PMid:20017000; 10.1007/s11356-009-0275-5Search in Google Scholar PubMed PubMed Central

2. Núñez, L., Tadeo, J. L., García-Valcárcel, A. I. and Turiel, E.: Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. J. Chromatogr.1214 (2008) 17882. PMid:19010476; 10.1016/j.chroma.2008.10.105Search in Google Scholar PubMed

3. Andersen, F. A.: Final amended report on the safety assessment of methylparaben, ethylparaben, propylparaben, isopropylparaben, butylparaben, isobutylparaben, and benzylparaben as used in cosmetic products. Int. J. Toxicol.27 (4) (2008) 182. 10.1080/10915810802548359Search in Google Scholar PubMed

4. Harvey, P. W. and EverettD. J.: Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours. J. Appl. Toxicol.24 (1) (2004) 14. 10.1002/jat.957Search in Google Scholar PubMed

5. Arditti, R.: Cosmetics, parabens, and breast cancer. Organic Consumers Association. (2004).Search in Google Scholar

6. Darbre, P. D. and Harvey, P. W.: Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J. Appl. Toxicol.28(5) (2008) 56178. PMid:18484575; 10.1002/jat.1358Search in Google Scholar PubMed

7. Darbre, P. D., Aljarrah, A., Miller, W. R., Coldham, N. G., Sauer, M. J. and Pope, G. S.: Concentrations of Parabens in human breast tumours. J. Appl. Toxicol.24(1) (2004) 513. PMid:14745841; 10.1002/jat.958Search in Google Scholar PubMed

8. Tran, T. M., Minh, T. B., Kumosani, T. A. and Kannan, K.: Occurrence of phthalate diesters (phthalates), p-hydroxybenzoic acid esters (parabens), bisphenol A diglycidyl ether (BADGE) and their derivatives in indoor dust from Vietnam: implications for exposure. Chemosphere. 144 (2016) 15531559. PMid:26498104; 10.1016/j.chemosphere.2015.10.028Search in Google Scholar PubMed

9. Li, W., Shi, Y., Gao, L., Liu, J. and CaiY.: Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant. J. Hazard. Mater.300 (2015) 2938. PMid:26151382; 10.1016/j.jhazmat.2015.06.060Search in Google Scholar PubMed

10. Fan, C. and Wang, S. C.Co-metabolic enhancement of organic removal from waste water in the presence of high levels of alkyl paraben constituents of cosmetic and personal care products, Chemosphere. 179 (2017) 306315. PMid:28376394; 10.1016/j.chemosphere.2017.03.120Search in Google Scholar PubMed

11. Fan, C. and Wang, H. C.: Degradation of Methyl Paraben by the Aerated Pebble-bed Biofilm System, APCBEE Procedia.1 (2012) 299303. 10.1016/j.apcbee.2012.03.049Search in Google Scholar

12. Lu, J., Li, H., Tu, Y. and Yang, Z.: Biodegradation of four selected parabens with aerobic activated sludge and their transesterification product, Ecotoxicol. Environ. Saf., 156 (2018) 4855. 10.1016/j.ecoenv.2018.02.078Search in Google Scholar

13. Kheng, T. S.: Noorsaadah, A.Rahman, M. and Radzi, A.B.Ozonation of parabens in aqueous solution: Kinetics and mechanism of degradation, Chemosphere, 81 (2010) 14461453. PMid:20875662; 10.1016/j.chemosphere.2010.09.004Search in Google Scholar

14. Gomes, F. E. R., de Souza, N. E., Galinaro, C. A., Arriveti, L. O. R., de Assis, J. B. and Tremiliosi-Filho, G.: Electrochemical degradation of butyl paraben on platinum and glassy carbon electrodes, J. Electroanal. Chem.769 (2016)124130; DOI.org/10.1016/j.jelechem.2016.03.016. 10.1016/j.jelechem.2016.03.016Search in Google Scholar

15. Dionisio, D., Motheo, A. J., Sáez, C. and RodrigoM. A.: Effect of the electrolyte on the electrolysis and photoelectrolysis of synthetic methyl paraben polluted wastewater, Sep. Purif. Technol.208 (2019) 201207. 10.1016/j.seppur.2018.03.009Search in Google Scholar

16. Papadopoulos, C., Frontistis, Z., Antonopoulou, M., Venieri, D., Konstantinou, I. and Mantzavinos, D.: Sonochemical degradation of ethyl paraben in environmental samples: statistically important parameters determining kinetics, by-products and pathways, Ultrasonics Sonochem.31 (2016) 6270. PMid:26964924; 10.1016/j.ultsonch.2015.12.002Search in Google Scholar

17. Gomes, J. F., Leal, I., Bednarczyk, K., Gmurek, M., Stelmachowski, M., Zaleska-Medynska, A., Quinta-Ferreira, M., Costa, R., Quinta-Ferreira, R. M., and Martins, R. C.: Detoxification of Parabens Using UV-A enhanced by Noble Metals–TiO2 Supported Catalysts, J. Environ. Chem. Eng.5(4) (2017) 30653074. 10.1016/j.jece.2017.06.010Search in Google Scholar

18. Velegraki, T., Hapeshi, E., Fatta-Kassinos, D. and Poulios, I.: Solar-induced heterogeneous photocatalytic degradation of methyl-paraben. Applied Catalysis B: Environmental.178 (2015) 211. 10.1016/j.apcatb.2014.11.022Search in Google Scholar

19. Gmurek, M. and Miller, J.: Photosensitized oxidation of a water pollutant using sulphonated porphyrin, Chem. Pap.66 (2012) 120128. 10.2478/s11696-011-0103-5Search in Google Scholar

20. Watanabe, H. and Tanaka, H.: a non-ionic surfactant as a new solvent for liquid-liquid extraction of zinc (II) with 1-(2-pyridylazo)-2-naphthol. Talanta, 25 (1978) 585589. 10.1016/0039-9140(78)80151-9Search in Google Scholar

21. Scamehorn, J. F. and Harwell, J. H.: Surfactant-Based Treatment of Aqueous Process Stream, in: Surfactant in Chemical/Process Engineering, Wasan, D.T., Ginn, M.E.; Shah D.O., Eds., Surfactant Science Series, Marcel Dekker, New York.28 (1988) 77125.Search in Google Scholar

22. Gullickson, N. D., Scamehorn, J. F. and Harwell, J. H.: Liquid-coacervate extraction, in: Surfactant-based Separation Processes. Surfactant Science Series, Marcel Dekker, New York33 (1989) 141152.Search in Google Scholar

23. Akita, S. and Takeuchi, H.: Cloud Point extraction of organic compounds from aqueous solution with non-ionic surfactant. Sep. Sci. Technol.30 (1995) 833835. 10.1080/01496399508013895Search in Google Scholar

24. Hinze, W. L. and Pramauro, E.: A critical review of surfactant-mediated phase separation (Cloud Point Extraction): theory and application, Crit. Rev. Anal. Chem., 24(2) (1993) 133177. 10.1080/10408349308048821Search in Google Scholar

25. Quina, F. H. and Hinze, W. L.: Surfactant-mediated cloud point extraction: an environmentally benign alternative separation approach, Ind. Eng. Chem. Res., 38 (1999) 150168. 10.1021/ie980389nSearch in Google Scholar

26. De Barros Neto, E. L., Canselier, J. P. and Gourdon, C.: Organic solvent-free extraction of phenol through liquid-coacervate systems, Solvent Extraction for the 21st Century, Proceedings of the International Solvent Extraction Conference, Barcelone (ISEC’99), July 1999, Cox, M.; Hidalgo M.; Valiente M. Eds., 1 (2001) 171176, Society of Chemical Industry, London.Search in Google Scholar

27. Sakulwongyai, S., Trakultamupatam, P., Scamehorn, J. F., Osuwan, S. and Christian, S. D.: Use of surfactant coacervate phase to extract chlorinated aliphatic compounds from water: extraction of chlorinated ethanes and quantitative comparison to solubilization in micelles. Langmuir, 16 (2000) 82268230. 10.1021/la9817821Search in Google Scholar

28. Kimchuwanit, W., Osuwan, S., Scamehorn, J. F., Harwell, J. H. and Haller, K. J.: Use of a micellar-rich coacervate to extract trichlorethylene from water. Sep. Sci. Technol.35 (13) (2000) 19912002. 10.1081/SS-100102085Search in Google Scholar

29. Materna, K., Milosz, I., Miesiac, I.Cote, G. and Szymanowski, J.: Removal of phenols from aqueous streams by the cloud point extraction technique with oxyethylated methyl dodecanoates as surfactants. Environ. Sci. Technol., 35 (2001) 23412346. PMid:11414042; 10.1021/es000025ySearch in Google Scholar

30. Materna, K. and Szymanowski, J.: Separation of phenols from aqueous micellar solutions by cloud point extraction. J. Colloid Interface Sci.255 (2002) 195201. 10.1006/jcis.2002.8613Search in Google Scholar

31. Li, J. and Chen, B.: Equilibrium partition of polycyclic aromatic hydrocarbons in a cloud-point extraction process, Journal of Colloid and Interface Science, 2003, 263(2): 625632. 10.1016/S0021-9797(03)00403-XSearch in Google Scholar

32. Purkait, M. K., Dasgupta, S. and De, S.: Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction. J. Hazard. Mater, 137 (2006) 827835. PMid:16600488; 10.1016/j.jhazmat.2006.03.003Search in Google Scholar PubMed

33. Ameur, S., Haddou, B., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point extraction of ‡9-tetrahydrocannabinol from cannabis resin. Anal. Bioanal. Chem., 405 (2013) 31173123. PMid:23354583; 10.1007/s0021-013-6743-2Search in Google Scholar

34. Haddou, B.Canselier, J. P. and Gourdon, C.: Use of Cloud Point Extraction with Ethoxylated Surfactants for Organic Pollution Removal, in: The Role of Colloidal Systems in Environmental Protection, M.Fanun, Ed., Elsevier, 5 (2014) 97142. 10.1016/B978-0-444-63283-8.00005-3Search in Google Scholar

35. Talbi, Z., Haddou, B., Ghouas, H., Kameche, M., Derriche, Z and Gourdon, C.: Cationic Dye Removal from Aqueous Solutions Using Ionic Liquid and Nonionic Surfactant-Ionic Liquid Systems: A Comparative Study Based upon Experimental Design. Chem. Eng. Comm.201(1) (2014) 4152. 10.1080/00986445.2012.759563Search in Google Scholar

36. Ghouas, H., Haddou, B., Kameche, M., Louhibi, L., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point extraction of α-amino acids, Sep. Sci. Technol., 49(14) (2014) 21422150. 10.1080/01496395.2014.919322Search in Google Scholar

37. Ghouas, H., Haddou, B., Kameche, M., Canselier, J. P. and Gourdon, C.: Removal of Tannic Acid from Aqueous Solution by Cloud Point Extraction and Investigation of Surfactant Regeneration by Microemulsion Extraction, J. Surf. Deterg., 19(1) (2016) 5766. 10.1007/s11743-015-1764-9Search in Google Scholar

38. Habbal, S., Haddou, B., Kameche, M., Derriche, Z., Canselier, J. P. and Gourdon, C.: Cloud point or ionic liquid extraction of furfural from aqueous solution: a comparative study based upon experimental design. Desalination Water Treat.57(50) (2016) 2377023778. 10.1080/19443994.2015.1133322Search in Google Scholar

39. Favre-Réguillon, A., Draye, M., Lebuzit, G., Thomas, S., Foos, J.Cote, G. and Guy, A.: Cloud point extraction: an alternative to traditional liquid–liquid extraction for lanthanides (III) separation. Talanta63 (2004) 803806. PMid:18969503; 10.1016/j.talanta.2003.12.033Search in Google Scholar PubMed

40. Canselier, J. P., Gourdon, C., Duarte, L. J. N., De Barros Neto, E. L., Haddou, B. and Gumila: Procédé d'extraction sans solvant des polluants organiques et métalliques. French Patent FR2900145 (A1); WO-2007-122158 (PCT/EP2007/053777), April 18, 2007.Search in Google Scholar

41. Duarte, L. J. N. and Canselier, J. P.: Two-aqueous phase extraction for the removal of organic pollutants ant metalions. CHEMPOR 2008 – 10th International Chemical and Biological Engineering Conference. Braga (Portugal), 4–8 September. Proceedings on disk.Search in Google Scholar

42. Trakultamupatam, P., Scamehorn, J. F. and Osuwan, S.: Scaling up cloud point extraction of aromatique contaminants from wastewater in a continuous rotating disk contactor. II. Effect of operating temperature and added electrolyte. Sep. Sci. Technol., 39 (3) (2005) 501516. 10.1081/SS-120027992Search in Google Scholar

43. Taechangam, P., Scamehorn, J. F., Osuwan, S. and Rirksomboon, T.: Continuous cloud point extraction of volatile organic contaminants from wastewater in a multi-stage rotating disc contactor: effect of structure and concentration of solutes. Sep. Sci. Technol., 43(14) (2008) 3601. 10.1080/01496390802282339Search in Google Scholar

44. Yao, B. and Yang, L.: Pilot-scale ultrasonic assisted cloud point extraction of polycyclic aromatic hydrocarbons from polluted water. Sep. Sci. Technol., 43(6) (2008) 15641580. 10.1080/01496390801955588Search in Google Scholar

45. Ingram, T., Storm, S.Glembin, P., Bendt, S., Huber, D., Mehling, T and Smirnova, I.: Aqueous surfactant two-phase systems for the continuous countercurrent cloud point extraction. Chem. Ing. Techn.84(6) (2012) 840848. 10.1002/cite.201100256Search in Google Scholar

46. Benkhedja, H., Canselier, J. P., Gourdon, C and Haddou, B.: Phenol and benzenoid alcohols separation from aqueous stream using cloud point extraction: Scaling-up of the process in a mixer-settler, J. Water Proc. Eng.18 (2017) 202212. 10.1016/j.jwpe.2017.06.016Search in Google Scholar

47. RitterE. and SmirnovaI.: continuous countercurrent extractive biocatalysis in aqueous surfactant tow-phase systems, Chem. Ing. Tech.90(3) (2018) 111. 10.1002/cite.201700054Search in Google Scholar

48. Schott, H., Royce, A. E. and Han, S. K.: Effect of inorganic additives on solutions of nonionic surfactants: VII. Cloud point shift values of individual ions. J Colloid Interface Sci.98 (1984) 196. 10.1016/S0927-7757(01)00491-5Search in Google Scholar

49. Sharma, K. S., Patil, S. R. and Rakshit, A. K.: Study of the cloud point of C12En nonionic surfactants: effect of additives, Colloids and Surfaces A: Physicochem. Eng Aspects., 219 (2003) 67. 10.1016/S0927-7757(03)00012-8Search in Google Scholar

50. Box, G. E. P. and Draper, N.: Empirical Model Building and Response Surfaces; John Wiley & Sons, New York. 1987. 10.1137/1031022Search in Google Scholar

51. Thiele, B., Günther, K. and Schwuger, M. J.: Alkylphenol ethoxylates: trace analysis and environmental behavior. Chem. Rev.97 (1997) 32473272. PMid:11851490; 10.1021/cr970323mSearch in Google Scholar

52. Jonkers, N., Laane, R. W. P. M. and De Voogt, P.: Sources and fate of nonylphenol ethoxylates and their metabolites in the Dutch coastal zone of the North Sea. Mar. Chem.96 (2005) 115135. 10.1016/j.marchem.2004.12.004Search in Google Scholar

53. Cheng, X. Q., Zhang, C., Wang, Z. X and Shao, L.: Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification, J. Membrane Sci.499 (2016)326–334. 10.1016/j.memsci.2015.10.060Search in Google Scholar

54. Saito, H. and Shinoda, K.: The solubilization of hydrocarbons in aqueous solution of nonionic surfactants. J Colloid Interface Sci.24 (1967) 1015. 10.1016/0021-9797(67)90271-8Search in Google Scholar

Received: 2018-03-18
Accepted: 2018-07-10
Published Online: 2019-03-07
Published in Print: 2019-03-15

© 2019, Carl Hanser Publisher, Munich

Downloaded on 9.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/113.110611/html
Scroll to top button