Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
-
Mohammad Mobin
Abstract
The adsorption and corrosion inhibition behaviour of zwitterionic gemini surfactant, 2-decyl phosphate-1-(N,N-dimethyl,N-tetradecylammonium) ethane on mild steel in 0.5 M HCl in the temperature range of 25–65°C has been investigated. The zwitterionic gemini surfactant was synthesized, purified and characterized using nuclear magnetic resonance (NMR) spectroscopy. Surface tension measurements were carried out to evaluate the surface and thermodynamic properties of the surfactant in 0.5 M HCl. Weight loss measurements, potentiodynamic polarization measurements, electrochemical impedance (EIS) measurements and thermodynamic/kinetic parameters were applied to elaborate the adsorption and corrosion inhibition mechanism of the surfactant. Surface morphology of the mild steel specimen corroded in unihibited and inhibited acid was also evaluated using scanning electron microscopy (SEM). The zwitterionic gemini surfactant acts as an excellent inhibitor for mild steel corrosion in 0.5 M HCl; the inhibition efficiency (IE) of inhibitor is concentration and temperature dependent. The evaluated gemini surfactant performed as a mixed-type corrosion inhibitor. The adsorption of surfactant on mild steel surface obeyed Langmuir's adsorption isotherm. The calculated thermodynamic parameters for adsorption reveal a strong interaction between the inhibitor and the mild steel surface.
Kurzfassung
Es wurde die Adsorption und das Korrosion inhibierende Verhalten des zwitterionischen Gemini-Tensids 2-Decylphosphat-1-(N,N-Dimethyl-N-tetradecylammonium)-ethan an Weichstahl in 0,5 M Salzsäure im Temperaturbereich von 25°C bis 65°C untersucht. Das zwitterionische Gemini-Tensid wurde synthetisiert, gereinigt und mit der Kernresonanzspektroskopie (NMR) charakterisiert. Mit der Messung der Oberflächenspannung wurden die thermodynamischen und die Oberflächeneigenschaften des Tensids in der 0,5 M HCl bestimmt. Messungen des Gewichtsverlusts, der potentiodynamischen Polarisation, der elektrochemischen Impedanz (EIS) und der thermodynamischen/kinetischen Parameter wurden verwendet, um die Adsorption und den Korrosionsinhibierungsmechanismus des Tensids auszuarbeiten. Die Oberflächenmorphologie der in An- und Abwesenheit von Inhibitor in Säure korrodierten Weichstahlproben wurde mittels Rasterelektronenmikroskopie (REM) bestimmt. Das zwitterionische Tensid ist bei der Weichstahlkorrosion in 0,5 M HCl ein hervorragender Inhibitor; die Inhibitoreffizienz (IE) ist konzentrations- und temperaturabhängig. Das untersuchte Gemini-Tensid funktionierte wie ein Mischtypkorrosionsinhibitor. Die Adsorption des Tensids auf der Weichstahloberfläche folgt der Langmuir-Adsorptionsisothermen. Die berechneten thermodynamischen Parameter der Adsorption deuten auch eine starke Wechselwirkung zwischen dem Inhibitor und der Weichstahloberfläche hin.
References
1. Free, M. L.: Understanding the effect of surfactant aggregation on corrosion inhibition of mild steel in acidic medium, Corros. Sci.44 (2002) 2865–2870. 10.1016/S0010-938X(02)00080-XSuche in Google Scholar
2. Osman, M. M., El-Ghazawy, R. A. and Al-Sabagh, A. M.: Corrosion inhibitor of some surfactants derived from maleic-oleic acid adduct on mild steel in 1 M H2SO4, Mater. Chem. Phys.80 (2003) 55–62. 10.1016/S0254-0584(01)00588-0Suche in Google Scholar
3. Migahed, M. A., Aly, R. O. and Al-Sabagh, A. M.: Impact of gamma-ray-pre-irradiation on the efficiency of corrosion inhibition of some novel polymeric surfactants, Corros. Sci.46 (2004) 2503–2516. 10.1016/j.corsci.2004.01.013Suche in Google Scholar
4. Wang, W. L. and Free, M. L.: Prediction and measurement of corrosion inhibition of mild steel using nonionic surfactants in chloride media, Corros. Sci.46 (2004) 2601–2611. 10.1016/S0010-938X(03)00152-5Suche in Google Scholar
5. Migahed, M. A. and Al-Sabagh, A. M.: Beneficial role of surfactants as corrosion inhibitors in petroleum industry: A review, Chem. Engg. Comm.196 (2009) 1054–1075. 10.1080/00986440902897095Suche in Google Scholar
6. Azhar, M. El., Mernari, B., Traisnel, M., Bentiss, F. and Lagrenee, M.: Corrosion inhibition of mild steel by the new class of inhibitors [2,5-bis(n-pyridyl)-1,3,4-thiadiazoles] in acidic media, Corros. Sci.43 (2001) 2229. 10.1016/S0010-938X(01)00034-8Suche in Google Scholar
7. Caroline, M. M., Christian, P., Hannes, C. S., Boris, K. and Ilhan, A. A.: Inhibition and promotion of copper corrosion by CTAB in a micro reactor system, Langmuir24 (2008) 14269–14275. 10.1021/la8024759Suche in Google Scholar PubMed
8. Chebabe, D., Chikh, Z. A., Dermaj, A., Rhattas, K., Jazouli, T., Hajjajji, N., Mdari, F. El. and Srhiri, A.: Synthesis of bolaamphiphile surfactants and their inhibitive effect on carbon steel corrosion in hydrochloric acid medium, Corros. Sci.46 (2004) 2701–2713. 10.1016/j.corsci.2004.03.016Suche in Google Scholar
9. Chikh, Z. A., Chebabe, D., Dermaj, A., Hajjajji, N., Srhiri, A., Montemor, M. F., Ferreira, M. G. S. and Bastos, A. C.: Electrochemical and Analytical Study of Corrosion Inhibition on Carbon Steel in HCl Medium by 1,12-bis(1,2,4-triazolyl)dodecane, Corros. Sci.47 (2005) 447–459. 10.1016/j.corsci.2004.05.028Suche in Google Scholar
10. Mu, G. and Li, X.: Inhibition of cold rolled steel corrosion by Tween-20 in sulfuric acid: Weight loss, electrochemical and AFM approaches, J. Colloid Interface Sci.289 (2005) 184–192. 10.1016/j.jcis.2005.03.061Suche in Google Scholar PubMed
11. Migahed, M. A.: Electrochemical investigation of the corrosion behaviour of mild steel in 2 M HCl solution in presence of 1-dodecyl-4-methoxy pyridinium bromide, Mater. Chem. Phys.93 (2005) 48–53. 10.1016/j.matchemphys.2005.02.003Suche in Google Scholar
12. Bentiss, F., Lebrini, M. and Lagrenée, M.: Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in mild steel/2,5-bis(n-thienyl)-1,3,4-thiadiazoles/hydrochloric acid system, Corros. Sci.47 (2005) 2915–2931. 10.1016/j.corsci.2005.05.034Suche in Google Scholar
13. Keera, S. T. and Deyab, M. A.: Effect of some organic surfactants on the electrochemical behaviour of carbon steel in formation water, Colloids Surf. A266 (2005) 129–140. 10.1016/j.colsurfa.2005.05.069Suche in Google Scholar
14. Atkin, R., Craig, V. S. J., Walness, E. L. and Biggs, S.: The influence of chain length and electrolyte on the adsorption kinetics of cationic surfactants at the silica-aqueous solution interface, J. Colloid Interface Sci.266 (2003) 236–244. 10.1016/S0021-9797(03)00631-3Suche in Google Scholar
15. Popova, A., Christov, M., Raicheva, S. and Sokolova, E.: Adsorption and inhibitive properties of benzimidazole derivatives in acid mild steel corrosion, Corros. Sci.46 (2004) 1333–1350. 10.1016/j.corsci.2003.09.025Suche in Google Scholar
16. Achouri, M. El., Kertit, S., Gouttaya, H. M., Nciri, B., Bensouda, Y., PerezL., Infante, M. R. and Elkacemi, K.: Corrosion inhibition of iron in 1 M HCl by some gemini surfactants in the series of alkanediyl-α,ω-bis-(dimethyl tetradecyl ammonium bromide), Prog. Org. Coat.43 (2001) 267–273. 10.1016/S0300-9440(01)00208-9Suche in Google Scholar
17. Achouri, M. El., Infante, M. R., Izquierdo, F., Kertit, S., Gouttaya, H. M. and Nciri, B.: Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium, Corros. Sci.43 (2001) 19–35. 10.1016/S0010-938X(00)00063-9Suche in Google Scholar
18. Qui, L. G., Xie, A. J. and Shen, Y. H.: Understanding the adsorption of cationic gemini surfactants on the steel surface in hydrochloric acid, Mater. Chem. Phys.87 (2004) 237–240. 10.1016/j.matchemphys.2004.06.014Suche in Google Scholar
19. Sharma, V., BorseM., Jauhari, S., Pai, K. B. and Devi, S.: New hydroxylated cationic gemini surfactants as effective corrosion inhibitors for mild steel in hydrochloric acid medium, Tenside Surfact. Deterg.3 (2005) 163–167. 10.3139/113.100253Suche in Google Scholar
20. Mobin, M. and Masroor, S.: Alkanediyl-α, ω-bis (dimethyl cetylammonium bromide) gemini surfactants as novel corrosion inhibitors for mild steel in formic acid, Mater. Res.15 (6) (2012) 837–848. org/10.1590/s1516-14392012005000112Suche in Google Scholar
21. Mobin, M. and Mashkoor, S.: Cationic Gemini Surfactants as Novel Corrosion Inhibitor for Mild Steel in 1 M HCl, International J. Electrochem. Sci.7 (2012) 6920–6940. org/10.1590/s1516-14392012005000112Suche in Google Scholar
22. Mobin, M. and Masroor, S.: Adsorption and corrosion inhibition behaviour of Schiff base-based cationic gemini surfactant on mild steel in formic acid, J. Disp. Sci. Tech.35 (2014) 535–544. org/10.1080/01932691.2013.799435Suche in Google Scholar
23. Ansari, W. H., Noori, S., Naqvi, A. Z. and Kabir-ud-Din: Interactions between zwitterionic surfactants and amphiphilic drug: a tentiometric study, Z. Physik. Chem.227 (2013) 441–458. 10.1524/zpch.2012.0340Suche in Google Scholar
24. Rosen, M. J.: Surfactants and Interfacial Phenomena, 3rd edn.John Wiley and Sons, New York (2004). 10.1002/0471670561Suche in Google Scholar
25. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization, Langmuir12 (1996) 1208–1211. 10.1021/la950691qSuche in Google Scholar
26. Rosen, M. J. and Aronson, S.: Standard free energies of adsorption of surfactants at the aqueous solution/air interface from surface tension data in the vicinity of the critical micelle concentration, Colloids Surf. A3 (1981) 201–208. 10.1016/0166-6622(81)80037-6Suche in Google Scholar
27. Sugihara, G., Miyazono, A., Nagadome, S., Oida, T., Hayashi, Y. and Ko, J. S.: Adsorption and micelle formation of mixed surfactant systems in water II: a combination of cationic gemini-type surfactant with MEGA-10, J. Oleo Sci.52 (2003) 449–461. org/10.5650/jos.52.449Suche in Google Scholar
28. Laughlin, R. G.: Fundamentals of the zwitterionic hydrophilic group, Langmuir7 (1991) 842–847. 10.1021/la00053a006Suche in Google Scholar
29. Huang, W. and Zhao, J.: Adsorption of quaternary ammonium gemini surfactants on zinc and the inhibitive effect on zinc corrosion in vitriolic solution, Colloids Surf. A278 (2006) 246–251. 10.1016/j.colsurfa.2005.12.028Suche in Google Scholar
30. Amin, M. A., Abd El Rehim, S. S., Hesham, T. M. and Abdel-Fatah, A. A.: Electrochemical frequency modulation and inductively coupled plasma atomic emission spectroscopy methods for monitoring corrosion rates and inhibition of low alloy steel corrosion in HCl solutions and a test for validity of the Tafel extrapolation method, Corros. Sci.51 (2009) 882–894. 10.1016/j.corsci.2009.01.006Suche in Google Scholar
31. Migahed, M. A., Mohammed, H. M. and Al-Sabagh, A. M.: Corrosion inhibition of H-11 type carbon steel in 1 M hydrochloric acid solution by N-propyl amino lauryl amide and its ethoxylated derivatives, Mater. Chem. Phys.80 (1) (2003) 169–175. 10.1016/S0254-0584(02)00456-XSuche in Google Scholar
32. Bentiss, M., Lebrini, M., Lagrenee, M. T., Traisnel, A. and Veziu, H.: The influence of some new 2,5-disubstituted 1,3,4-thiadiazoles on the corrosion behaviour of mild steel in 1 M HCl solution: ac impedance study and theoretical approach, Electrochim. Acta52 (2007) 6865–6872. 10.1016/j.electacta.2007.04.111Suche in Google Scholar
33. Refaey, S. A. M., Taha, F. and Abd El-Malak, A. M.: Inhibition of stainless steel pitting corrosion in acidic medium by 2-mercaptobenzoxazole, Appl. Surf. Sci.236 (2004) 175–185. 10.1016/j.apsusc.2004.04.016Suche in Google Scholar
34. Li, S. L., Wang, Y. G., Chen, S. H., Yu, R., Lei, S. B., Ma, H. Y. and De, X. Li: Some aspects of quantum chemical calculations for the study of Schiff base corrosion inhibitors on copper in NaCl solutions, Corros. Sci.41 (1999) 1769–1782. 10.1016/S0010-938X(99)00014-1Suche in Google Scholar
35. Rao, V. S. and Singhal, S.: Corrosion behaviour and passive film chemistry of 216 L stainless steel in sulphuric acid, J. Mater Sci.44 (2009) 2327. 10.1007/s10853-008-2976-4Suche in Google Scholar
36. Hu, L., Zhang, S., Li, W. and Hou, B.: Electrochemical and thermodynamic investigation of diniconazole and triadimefone as corrosion inhibitors for copper in synthetic seawater, Corros. Sci.52 (2010) 2891–2896. 10.1016/j.corsci.2010.04.038Suche in Google Scholar
37. Larabi, L., Harek, Y., Traisnel, M. and Mansri, A.: Synergistic influence of poly(4-vinylpyridine) and potassium iodide on inhibition of corrosion of mild steel in 1 M HCl, J. Appl. Electrochem.34 (8) (2004) 833–839. 10.1023/B:JACH.0000035609.09564.e6Suche in Google Scholar
38. Li, X., Deng, S. and Fu, H.: Benzyltrimethylammonium iodide as a corrosion inhibitor for steel in phosphoric acid produced by dihydrate wet method process, Corros. Sci.53 (5) (2011) 664–670. 10.1016/j.corsci.2010.10.013Suche in Google Scholar
39. Umoren, S. A., Li, Y. and Wang, F. H.: Influence of iron microstructure on the performance of polyacrylic acid as corrosion inhibitor in sulphuric acid solution, Corros. Sci.53 (2011) 1778–1785. 10.1016/j.corsci.2011.01.052Suche in Google Scholar
40. Mahdavian, M. and Ashhari, S.: Corrosion inhibition performance of 2-mercaptobenzimidazole and 2-mercaptobenzoxazole compounds for protection of mild steel in hydrochloric acid solution, Electrochimica Acta55 (2010) 1720–1724. 10.1016/j.electacta.2009.10.055Suche in Google Scholar
© 2016, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants