Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
-
Ajaya Kumar Singh
Abstract
The catalytic effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the MnO2-paracetamol (PCM) redox reaction has been examined spectrophotometrically in acidic medium at 298 K. The reaction demonstrates that the stoichiometric ratio of MnO2 and PCM is 1 : 1. The reaction exhibited first order kinetics with respect to [MnO2] and [PCM] but a negative fractional order was observed with respect to [H2SO4]. Various effects such as ionic strength, dielectric constant, [Mn(II)], [salts] and temperature have been studied. The catalytic effect of CTAB has been treated quantitatively by the well known Menger Portnoy and Piszkiewicz model. The values of binding constant (Ks), rate constant in the micellar phase (km), cooperativity index (n) and dissociation constant (KD) have also been calculated. From the several observations, a reaction mechanism has been proposed and the rate law has been derived. Applying the Arrhenius equation, various thermodynamic activation parameters have also been evaluated.
Kurzfassung
Der katalytische Einfluss von Mizellen des kationischen Cetyltrimethylammoniumbromids (CTAB) auf die MnO2-Paracetamol-Redoxreaction wurde spektrophotometrisch im sauren Medium bei 298 K untersucht. Das stöchiometrische Verhältnis von MnO2 und Paracetamol(PCM) beträgt bei dieser Reaktion 1 : 1. Die Reaktionskinetik ist Erster Ordnung hinsichtlich der MnO2− und der PCM-Konzentration, sie ist jedoch hinsichtlich der H2SO4-Konzentration von negativer gebrochener Ordnung. Es wurden verschiedene Einflüsse wie die Ionenstärke, die dielektrische Konstante, die Mn(II)-Konzentration, die Salzkonzentration und die Temperatur untersucht. Der katalytische Einfluss von CTAB wurde quantitativ mit dem gut bekannten Modell von Menger Portnoy und Piszkiewicz bestimmt. Die Bindungskonstante (Ks), die Geschwindigkeitskonstante in der mizellaren Phase (km), der Kooperativitätsindex (n) und die Dissoziationskonstante (KD) wurden ebenfalls bestimmt. Mit Hilfe der verschiedenen Beobachtungen wird ein Reaktionsmechanismus vorgeschlagen und das Geschwindigkeitsgesetz der Reaktion abgeleitet. Durch Anwendung der Arrhenius Gleichung konnten verschiedene thermodynamische Aktivierungsparameter ebenfalls berechnet werden.
References
1. Fujiwara, T., Mohammadzai, I. U., Kitayama, K., Funazumi, Y. and Kumamaru, T.: Catalytic behavior of tris(2,2′-bipyridine)iron(II) complex in chemiluminescence reaction of luminol in reversed micellar medium of cetyltrimethylammonium chloride, J. Colloid Interface Sci.310 (2) (2007) 682–685. 10.1016/j.jcis.2007.01.077Suche in Google Scholar
2. Bharathy, J. R. B., Ganesan, T. K., Rajkumar, E., Rajagopal, S., Manimaran, B., Rajendran, T. and Lu, K. L.: Micellar effect on the electron transfer reaction of chromium(V) ion with organic sulphides, Tetrahedron.61 (19) (2005) 4679–4687. 10.1016/j.tet.2005Suche in Google Scholar
3. Ortega, F. and Rodenas, E.: An electrostatic approach for explaining the kinetic results in the reactive counterion surfactants CTAOH and CTACN, J. Phys. Chem.91 (4) (1987) 837–840. 10.1021/j100288a016Suche in Google Scholar
4. Jiang, W., Xu, B., Lin, Q., Li, J., Fu, H., Zeng, X. and Chen, H.: Cleavage of phosphate diesters mediated by Zn(II) complex in Gemini surfactant micelles, J. Colloid Interface Sci.311 (2) (2007) 530–536. 10.1016/j.jcis.2007.02.056Suche in Google Scholar
5. Ahmad, N., Kumar, P., Hashmi, A. A. and Khan, Z.: Effect of cationic micelles of cetyltrimethylammonium bromide on the oxidation of thiourea by permanganate, Colloids Surf., A.315 (1–3) (2008) 226–231. 10.1016/j.colsurfa.2007Suche in Google Scholar
6. Kabir-ud-Din, Salem, J. K. J., Kumar, S., Rafiquee, Md. Z. A. and Khan, Z.: Effect of Cationic Micelles on the Kinetics of Interaction of Ninhydrin with L-Leucine and L-Phenylalanine, J. Colloid Interface Sci.213 (1) (1999) 20–28. 10.1006/jcis.1999.6085Suche in Google Scholar
7. Khatory, A., Kern, F., Lequeux, F., Appel, J., Porte, G., Morie, M., Ott, A. and Urbach, W.: Entangled versus multiconnected network of wormlike micelles, Langmuir.9 (4) (1993) 933–939. 10.1021/la00028a010Suche in Google Scholar
8. Kong, L. and Lemley, A. T.: Effect of nonionic surfactants on the oxidation of carbaryl by anodic Fenton treatment, Water Res.41 (12) (2007) 2794–2802. 10.1016/j.watres.2007Suche in Google Scholar
9. Sachez-Camazano, M., Arienzo, M., Sanchez-MartIn, M. J. and Crisanto, T.: Effect of different surfactants on the mobility of selected non-ionic pesticides in soil, Chemosphere.31 (8) (1995) 3793–3801. 10.1016/0045-6535(95)00253-5Suche in Google Scholar
10. Pennell, K. D., Adinolfi, A. M., Abriola, L. M. and Diallo, M. S.: Solubilization of dodecane, tetracholorethylene, and 1, 2-dichlorobenzene in micellar solution of ethoxylated non-ionic surfactants, Environ. Sci. Technol.31 (5) (1997)1382–1389. 10.1021/es9606Suche in Google Scholar
11. Katre, Y. R., Singh, M. and Singh, A. K.: An efficient and mild procedure for the preparation of aldonic acids via oxidation of D-sucrose by employing N-bromophthalimide oxidant and micellar system, Tenside Surfact Det.48 (1) (2011) 73–81. 10.3139/113.110Suche in Google Scholar
12. Katre, Y. R., Tripathi, K., Joshi, G. K. and Singh, A. K.: Micellar effect on kinetics of oxidation of acetophenone by N-bromophthalimide in aqueous acetic acid medium, J. Dispersion Sci. Technol.32 (3) (2011) 341–351. 10.1080/01932691003659809Suche in Google Scholar
13. Katre, Y. R., Goyal, N. and Singh, A. K.: Effect of CTAB micelle on the oxidation of L-leucine by N-bromophthalimide: a kinetic study, Z. Phys. Chem.225 (1) (2011) 107–124. 10.1524/zpch.2011.0004Suche in Google Scholar
14. Katre, Y. R., Singh, M. and SinghA.K.: Kinetics and mechanism of cetyltrimethylammonium bromide catalyzed n-bromo-succinimide oxidation of D-mannose in acidic medium, J. Dispersion Sci. Technol.32 (6) (2011) 903–912. 10.1080/01932691003Suche in Google Scholar
15. Patil, S., Katre, Y. R. and Singh, A. K.: Micellar effect on the kinetics of oxidation of malic acid by N-bromophthalimide, Colloids Surf., A.308 (1–3) (2007) 6–13. 10.1016/j.colsurfa.2007.05.015Suche in Google Scholar
16. Katre, Y., Tripathi, K. and Singh, A. K.: Kinetics of cetyltrimethylammonium bromide catalysed oxidation of cyclopentanone by N-bromophthalimide in acidic medium, Tenside Surfact. Det.51 (2) (2014) 146–155. 10.3139/113.110295Suche in Google Scholar
17. KatreY.R., Singh, M., Patil, S. and Singh, A. K.: Micelle catalyzed oxidation of mannose by N- bromophthalimide in sulphuric acid, Acta Phys. Chim. Sin.25 (2) (2009) 319–326. 10.3866/PKU.WHXB20090221Suche in Google Scholar
18. Katre, Y. R., Singh, M. and SinghA.K.: Kinetics and mechanism of oxidation reaction of lactose by N-bromophthalimide: Micelles used as a catalyst, Colloid J.74 (3) (2012) 391–400. 10.1134/S1061933X12030167Suche in Google Scholar
19. Katre, Y. R., Singh, M. and SinghA.K.: Kinetics and mechanism of cetyltrimethylammonium bromide catalyzed n-bromo-succinimide oxidation of D-mannose in acidic medium, J. Dispersion Sci. Technol.32 (6) (2011) 903–912. 10.1080/0193269Suche in Google Scholar
20. Katre, Y. R., Tripathi, K., Joshi, G. K. and Singh, A. K.: Micellar effect on kinetics of oxidation of acetophenone by N-bromophthalimide in aqueous acetic acid medium, J. Dispersion Sci. Technol.32 (3) (2011) 341–351. 10.1080/01932691003659809Suche in Google Scholar
21. Perez-Benito, J. F., Arias, C. and Amat, E.: A Kinetic Study of the Reduction of Colloidal Manganese Dioxide by Oxalic Acid, J. Colloid Interface Sci.177 (2) (1996) 288–297. 10.1006/jcis.1996.0034Suche in Google Scholar
22. Perez-Benito, J. F. and Arias, C.: A kinetic study of the permanganate oxidation of triethylamine. Catalysis by soluble colloids, Int. J. Chem. Kinet.23 (8) (1991) 717–732. 10.1002/kin.550230806Suche in Google Scholar
23. Orban, M. and Epstein, I. R.: Systematic design of chemical oscillators. 59. Minimal permanganate oscillator: the Guyard reaction in a CSTR, J. Am. Chem. Soc.111 (22) (1989) 8543–8544. 10.1021/ja00204a051Suche in Google Scholar
24. Mata-Perez, F. and Perez-Benito, J. F.: Identification of the product from the reduction of permanganate ion by trimethylamine in aqueous phosphate buffers, Can. J. Chem.63 (4) (1985) 988–992.10.1139/v85-165Suche in Google Scholar
25. Freeman, F. and Kappos, J. C.: Permanganate ion oxidations. 15. Additional evidence for formation of soluble (colloidal) manganese dioxide during the permanganate ion oxidation of carbon-carbon double bonds in phosphate-buffered solutions, J. Am. Chem. Soc.107 (23) (1985) 6628–6633. 10.1021/ja00309a034Suche in Google Scholar
26. Tessier, A., Fortin, D., Belzile, N., DeVitre, R. R. and Leppard, G. G.: Metal sorption to diagenetic iron and manganese oxyhydroxides and associated organic matter: narrowing the gap between field and laboratory measurements, Geochim. Cosmochim. Acta.60 (3) (1996) 387–404. 10.1016/0016-7037(95)00413-0Suche in Google Scholar
27. Negra, C., Ross, D. S. and Lanzirotti, A.: Oxidizing behavior of soil manganese: interactions among abundance, oxidation state and pH. Soil, Sci. Soc. Am. J.69 (1) (2005) 87–95. 10.2136/sssaj2005.0087Suche in Google Scholar
28. Lin, K., Liu, W. and Gan, J.: Oxidative removal of bisphenol A by manganese dioxide: efficacy, products and pathways, Environ. Sci. Technol.43 (10) (2009) 386–3864. 10.1021/es900235fSuche in Google Scholar PubMed
29. Chen, W. R., Ding, Y. J., Johnston, C. T., Teppen, B. J., Boyd, S. A. and Li, H.: Reaction of lincosamide antibiotics with manganese oxide in aqueous solution, Environ. Sci. Technol.44 (12) (2010) 4486–4492. 10.1021/es1000598Suche in Google Scholar PubMed
30. Clarke, C. E., Kielar, F., Talbot, H. M. and Johnson, K. L.: Oxidative decolorization of acid azo dyes by a Mn oxide containing waste, Environ. Sci. Technol.44 (3) (2010) 1116–1122. 10.1021/es902305eSuche in Google Scholar PubMed
31. Xu, L., Xu, C., Zhao, M. R., Qiu, Y. P. and Sheng, G. D.: Oxidative removal of aqueous steroid estrogens by manganese oxides, Water Res.42 (20) (2008) 5038–5044.; .watres.2008.09.016. 10.1016/jSuche in Google Scholar
32. Lu, Z., Lin, K. and Gan, J.: Oxidation of bisphenol F (BPF) by manganese dioxide, Environ. Pollut.159 (10) (2011) 2546–2551. 10.1016/j.envpol.2011.06.016Suche in Google Scholar
33. Akram, Mohd., Altaf, Mohd and Kabir-ud-Din: Oxidative degradation of dipeptide (glycyl-glycine) by water-soluble colloidal manganese dioxide in the aqueous and micellar media, Colloids Surf., B.82 (1) (2011) 217–223. 10.1016/j.colsurfb.2010Suche in Google Scholar
34. Durán, A., Monteagudo, J. M., Carnicer, A. and Ruiz-Murillo, M.: Photo-Fenton mineralization of synthetic municipal wastewater effluent containing acetaminophen in a pilot plant, Desalination. 270 (1–3) (2011) 124–129. 10.1016/j.desal.2010.11.032Suche in Google Scholar
35. Gusseme, B. D., Vanhaecke, L., Verstraete, W. and Boon, N.: Degradation of acetaminophen by Delftia tsuruhatensis and Pseudomonas aeruginosa in a membrane bioreactor, Water Res.45 (4) (2011) 1829–1837. 10.1016/j.watres.2010.11.040Suche in Google Scholar
36. Liu, A., Wang, K., Chen, W., Gao, F., Cai, Y. S., Lin, X. H., Chen, Y. Z. and Xia, X. H.: Simultaneous and sensitive voltammetric determination of acetaminophen and its degradation product for pharmaceutical quality control and pharmacokinetic research by using ultrathin poly (calconcarboxylic acid) film modified glassy carbon electrode, Electrochimica Acta.63 (2012) 161–168. 10.1016/j.electacta.2011.12.067Suche in Google Scholar
37. Brillas, E., Sires, I., Arias, C., Cabot, P. L., Centellas, F., Rodrıguez, R. M. and Garrido, J. A.: Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode, Chemosphere.58 (4) (2005) 399–406. 10.1016/j.chemosphere.2004.09.028Suche in Google Scholar
38. Andreozzi, R., Caprio, V., Marotta, R. and Vogna, D.: Paracetamol oxidation from aqueous solutions by means of ozonation and H2O2/UV system, Water Res.37 (5) (2003) 993–1004. 10.1016/S0043-1354(02)00460-8Suche in Google Scholar
39. Skourmal, M., Canot, P. L., Centellas, F., Arias, C., Rodriguez, R. M., Garrido, J. A. and Brillas, E.: Mineralization of paracetamol by ozonation catalyzed with Fe+2, Cu+2 and UVA light, Appl. Catal. B Environ.66 (3–4) (2006) 228–240. 10.1016/j.apcatb.2006.03.016Suche in Google Scholar
40. Yang, L., Yu, L. E. and Ray, M. B.: Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis, Water Res.42 (13) (2008) 3480–3488.10.1016/j.watres.2008.04.023Suche in Google Scholar PubMed
41. Raoof, H., Mielczarek, P., Michalow, K. A., Rekas, M. and Silberring, J.: Synthesis of metabolites of paracetamol and cocaine via photooxidation on TiO2 catalyzed by UV light, J. Photochem. Photobiol. B, Biol.118 (2013) 49–57. 10.1016/j.jphotobiol.2012.10Suche in Google Scholar
42. Zhang, X., Wu, F., Wu, X. W., Chen, P. and Deng, N.: Photodegradation of acetaminophen in TiO2 suspended solution, J. Hazard. Mater.157 (2–3) (2008) 300–307. 10.1016/j.jhazmat.2007.12.098Suche in Google Scholar PubMed
43. Moctezuma, E., Leyva, E., Aguilar, C. A., Luna, R. A. and Montalvo, C.: Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism, J. Hazard. Mater.243 (2012) 130–138. 10.1016/j.jhazmat.2012.10.010Suche in Google Scholar PubMed
44. Tan, C., Gao, N., Deng, Y., Deng, J., Zhou, S., Li, J. and Xin, X.: Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate, J. Hazard. Mater.276 (2014) 452–460. 10.1016/j.jhazmatSuche in Google Scholar
45. Valdez, H. C. A., Jiménez, G. G., Granados, S. G. and León, C. P.: Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3, Chemosphere.89 (10) (2012) 1195–1201. 10.1016/j.chemosphere.2012.07.020Suche in Google Scholar PubMed
46. Duran, A., Monteagudo, J. M., Carnicer, A. and Ruiz-Murillo, M.: Photo-Fenton mineralization of synthetic municipal wastewater effluent containing acetaminophen in a pilot plant, Desalination. 270 (1–3) (2011) 124–129. 10.1016/j.desal.2010.11.032Suche in Google Scholar
47. Trovo, A. G., Nogueira, R. F. P., Aguera, A., Fernandez-Alba, A. R. and Malato, S.: Paracetamol degradation intermediates and toxicity during photo-Fenton treatment using different iron species, Water Res.46 (16) (2012) 5374–5380. 10.1016/j.watres.2012.07.0Suche in Google Scholar
48. Luna, M. D. G., Veciana, M. L., Su, C. and Lu, M.: Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell, J. Hazard. Mater.217–218 (2012) 200–207. 10.1016/j.jhazmat.2012.03.018Suche in Google Scholar PubMed
49. Su, C., Bellotindos, L. M., Chang, A. and Lu, M.: Degradation of acetaminophen in an aerated Fenton reactor, J. Taiwan Inst. Chem. E.44 (2) (2013) 310–316. 10.1016.j.jtice.2012.11.009Suche in Google Scholar
50. Radjenovic, J., Sirtori, C., Petrovic, M., Barcelo, D. and Malato, S.: Solar photocatalytic of major intermediate products, Appl. Catal. B: Environ.89(1–2) (2009) 255–264. 10.1016/j.apcatb.2009.02.013Suche in Google Scholar
51. Singh, A. K., Negi, R., Katre, Y. R., Singh, S. P. and Sharma, V. K.: Pd(II) Catalyzed Oxidative Degradation of Paracetamol by Chloramine-T in Acidic and Alkaline Media, Ind. Eng. Chem. Res.50 (14) (2011) 8407–8419. 10.1021/ie101661mSuche in Google Scholar
52. Singh, A. K., Negi, R., Katre, Y. and Singh, S. P.: Mechanistic study of novel oxidation of paracetamol by chloramine-T using micro-amount of chloro-complex of Ir(III) as a homogeneous catalyst in acidic medium, J. Mol. Catal. A: Chem.302 (1–2) (2009) 36–42. 10.1016/j.molcata.2008.11.041Suche in Google Scholar
53. Quesada-Penate, I., Julcour-Lebigue, C., Jauregui-Haza, U. J., Wilhelm, A. M. and Delmas, H.: Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption-Catalytic wet air oxidation on activated carbons, J. Hazard. Mater.221–222 (2012) 131–138. 10.1016/j.jhazmat.2012.04.021Suche in Google Scholar
54. Mulla, R. M., Gurubasavaraj, H. M. and Nandibewoor, S. T.: Kinetics of ruthenium(III)-catalysed oxidation of paracetamol by diperiodatonickelate(IV) in aqueous alkaline medium (stopped flow technique), Appl. Catal. A.314 (2) (2006) 208–215. 10.1016/j.apcata.2006.08.019Suche in Google Scholar
55. Najjar, N. H. E., Touffet, A., Deborde, M., Journel, R. and Leitner, N. K. V.: Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, formation of transformation products and toxicity, Sep. Purif. Technol.136 (2014) 137–143. 10.1016/j.seppur.2014Suche in Google Scholar
56. Perez-Benito, J. F. and Lee, D. G.: Oxidation of hydrocarbons. 15. A study of the oxidation of alkenes by methyltributylammonium permanganate, Can. J. Chem.63 (12) (1985) 3545–3550.10.1139/v85-582Suche in Google Scholar
57. Perez-Benito, J. F., Brillas, E. and Pouplana, R.: Identification of a soluble form of colloidal manganese (IV), Inorg. Chem.28 (3) (1989) 390–392. 10.1021/ic00302a002Suche in Google Scholar
58. Perez-Benito, J. F. and Arias, C.: A Kinetic Study of the Reaction between Soluble (Colloidal) Manganese Dioxide and Formic Acid, J. Colloid Interface Sci.149 (1992) 92–97. 10.1016/0021-9797(92)90394-2Suche in Google Scholar
59. Ilyas, Mohd., Malik, M. A., Andrabi, S. M. Z. and Khan, Z.: Kinetics and Mechanism of Paracetamol Oxidation by Chromium(VI) in Absence and Presence of Manganese(II) and Sodiumdodecyl Sulphate, Res. Lett. Phys. Chem. (2007) 264–267. 10.1155/2007/8290Suche in Google Scholar
60. Tabassum, S., Sabir, S., Sulaiman, O., Rafatullah, M., Khan, I. and Hashim, R.: Oxidative Degradation of Acetaminophen by Permanganate in Neutral Medium-A Kinetic and Mechanistic Pathway, J. Dispersion Sci. Technol.32 (2) (2011) 217–223. 10.1080/01932691003656938Suche in Google Scholar
61. Feigl, F.: Spot Tests in Organic Analysis, Elsevier, New York, NY, USA, 4 (5–6) (1966)169–182.Suche in Google Scholar
62. Sultan, S. M.: Spectrophotometric determination of paracetamol in drug formulations by oxidation with potassium dichromate, Talanta.34 (7) (1987) 605–608. 10.1016/0039-9140(87)80074-7Suche in Google Scholar
63. Qamruzzaman and Nasar, A.: Degradation of tricyclazole by colloidal manganese dioxide in the absence and presence of surfactants, J. Ind. Eng. Chem.20 (3) (2014) 897–902. 10.1016/j.jiec.2013.06.020Suche in Google Scholar
64. Akram, Mohd., Altaf, Mohd., Kabir-ud-Din and Al-Thabaiti, S. A.: Kinetics and mechanism of the reduction of colloidal MnO2 by glycyl-leucine in the absence and presence of surfactants, Colloids Surf. B.16 (3) (2011) 217–225. 10.1016/j.jscs.2010.12.009Suche in Google Scholar
65. Kabir-ud-Din, Fatma, W. and Khan, Z.: Effect of surfactants on the oxidation of oxalic acid by soluble colloidal MnO2, Colloids Surf., A.234 (1–3) (2004) 159–164. 10.1016/jcolsurfa.2003.12.015Suche in Google Scholar
66. Ramalingaiah, Jagadeesh R. V. and Puttaswamy: Os(VIII)-catalyzed and uncatalyzed oxidation of biotin by chloramine-T in alkaline medium : Comparative mechanistic aspects and kinetic modelling, J. Mol. Catal. A: Chem.265 (1–2) (2007) 70–79. 10.1016/j.molcata.2006.09.047Suche in Google Scholar
67. Menger, F. M. and Portony, C. E.: Chemistry of reactions proceeding inside molecular aggregates, J. Am. Chem. Soc.89 (18) (1967) 4698–4703. 10.1021/ja00994a023Suche in Google Scholar
68. Bunton, C. A., Nome, F., Romsted, L. S. and Quina, F. H.: Ion binding and reactivity at charged aqueous interfaces, Acc. Chem. Res.24 (12) (1991) 357–364. 10.1021/ar00012Suche in Google Scholar
69. Cerichelli, G., Mancini, G., Luchetti, L., Savelli, G. and Bunton. C. A.: Surfactant Effects upon Cyclization of o-(.omega.-Haloalkoxy)phenoxide Ions. The Role of Premicellar Assemblies, Langmuir.10 (11) (1994) 3982–3987. 10.1021/la00023a014Suche in Google Scholar
70. Bunton, C. A.: Reactivity in aqueous association colloids. Descriptive utility of the pseudo phase model, J. Mol. Liq.72 (1–3) (1997) 231–249. 10.1016/S0167-7322(97)000Suche in Google Scholar
71. Piszkiewicz, D.: Cooperativity in bimolecular micelle catalyzed reactions. Inhibition of catalysis by high concentrations of detergent, J. Am. Chem. Soc.99 (23) (1977) 7695–7697. 10.1021/ja00465a046Suche in Google Scholar
72. Hill, A. V.: The heat produced in contracture and muscular tone, J. Physiol.40 (5) (1910) 389–403. 10.1113/jphysiol.1910.sp001377Suche in Google Scholar PubMed PubMed Central
73. Pandey, S. and Upadhyay, S. K., Effect of cationic micellar aggregates on the kinetics of oxidation of aminoalcohols by N-bromosuccinimide in alkaline medium, J. Colloid Interface Sci.285 (2005) 789–794. 10.1016/j.jcis.2004.01.085Suche in Google Scholar PubMed
74. Pandey, E. and Upadhyay, S. K.: Effect of micellar aggregates on the kinetics oxidation of α-amino acids by chloramin T in perchloric acid medium, colloids surf., A.269 (2005) 7–15. 10.1016/j.colsurfa.2005.05.029Suche in Google Scholar
© 2016, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Physical Chemistry
- Surface-Active Properties of a Trimeric Sulfate-type Surfactant Derived from Glycerol
- Interface Activity and Thermodynamic Properties of Cardanol Polyoxyethylene Ether Carboxylates
- Synthesis and Properties of Dioctyl Diphenyl Ether Disulfonate Gemini Surfactant
- Synthesis and Biological Activity of Alkyl Pyridinium Aldoxime Based Surfactants
- Application
- Enhanced Soil Remediation via Plant-Based Surfactant Compounds from Acanthophyllum Laxiusculum
- Micellar Catalysis
- Picolinic Acid Promoted Permanganate Oxidation of D-Mannitol in Micellar Medium
- Micelle Catalyzed Oxidative Degradation of Paracetamol by Water Soluble Colloidal MnO2 in Acidic Medium
- Corrosion Inhibition
- Adsorption and Corrosion Inhibition Behaviour of Zwitterionic Gemini Surfactant for Mild Steel in 0.5 M HCl
- Laundry/Cleaning Agents
- Effect of the Concentration of Hop Cone Extract on the Antibacterial, Physico-Chemical and Functional Properties of Adhesive Toilet Cleaners
- Laundry Performance: Effect of Detergent and Additives on Consumer Satisfaction
- Deposition of Solid Impurity During Washing of Softented Cotton in Function of the Mixtures of Surfactants